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ABSTRACT 
The ABI fire detection and characterization algorithm theoretical basis document (ATBD) 
provides a high level description of diurnal fire detection, monitoring, and characterization 
utilizing the next generation GOES-R series Advanced Baseline Imager (ABI).  The purpose of 
the GOES-R ABI fire ATBD is to provide fire product developers, reviewers and users with a 
scientific and mathematical description of the GOES-R ABI fire detection and characterization 
algorithm.  GOES-R ABI offers enhanced opportunities for early detection of fires and high-
temporal monitoring of subpixel fire characteristics.  The GOES Wildfire Automated Biomass 
Burning Algorithm (WF_ABBA) has been running in real-time since 2000 and operationally in 
NESDIS since 2002 (McNamara et al., 2004; Schmidt and Prins, 2003), and the GOES-R ABI fire 
algorithm builds on the WF_ABBA processing system developed at the University of Wisconsin 
(UW) Cooperative Institute for Meteorological Satellite Studies (CIMSS) as a collaborative effort 
between NOAA/NESDIS/STAR and UW-CIMSS personnel.  The ABI fire algorithm is a dynamic 
multispectral thresholding contextual algorithm that is based on the sensitivity of the 3.9 μm band 
(Channel 7) to high temperature sub-pixel anomalies relative to the less sensitive 11.2 μm window 
band (Channel 14) and is derived from a technique originally developed by Matson and Dozier 
(1981) for NOAA Advanced Very High Resolution Radiometer (AVHRR) data.  The algorithm 
uses the shortwave Channel 2 reflectance (0.64 μm) when available during the daytime to 
determine surface reflectivity for cloud identification.  Channel 7 (3.9 μm) , and Channel 14 (11.2 
μm) are the bands fundamental to fire detection and characterization.  Channel 15  (12.3 µm)  is 
used to help identify opaque clouds. The algorithm incorporates statistical techniques to 
automatically identify hot spot pixels in the ABI imagery.  The GOES ABI fire product will be 
produced for each ABI image and provides diurnal fire detection and sub-pixel fire 
characterization for data within a satellite view angle of 80°.  The final user output product 
provides fire pixel locations, fire characteristics, and other metadata fields. 
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1 INTRODUCTION  
The purpose, users, scope, related documents and revision history of this document are briefly 
described in this section. Section 2 gives an overview of the observing system, products generated, 
and instrument characteristics. Section 3 describes the ABI fire algorithm, processing outline, input 
requirements, and theoretical description of fire monitoring.  Test data sets and sample output is 
presented in Section 4.  Practical considerations including numerical computation consideration; 
programming and procedural considerations, quality assessment and diagnostics; exception 
handling; and algorithm validation are discussed in Section 5. Assumptions and limitations are 
presented in Section 6 and include discussion of performance, assumed sensor performance, and 
pre-planned product improvements.  Section 7 provides a list of references.  

1.1 Purpose of This Document 

The ABI fire detection and characterization algorithm theoretical basis document (ATBD) 
provides a high level description of diurnal fire detection, monitoring, and characterization 
utilizing the next generation GOES-R series Advanced Baseline Imager (ABI).  The purpose of 
the GOES-R ABI fire ATBD is to provide fire product developers, reviewers and users with a 
theoretical description (scientific and mathematical) of the GOES-R ABI fire detection and 
characterization algorithm. This document presents an overview of requirements for the ABI fire 
product, ABI characteristics pertinent to fire monitoring, required input data, the physical and 
mathematical backgrounds of the fire  algorithm, predicted performance based on case study 
analyses, practical considerations, and assumptions and limitations.  Also, this document provides 
information useful to anyone maintaining or modifying the original algorithm.  
 

1.2 Who Should Use This Document 

The intended users of this document are those interested in understanding the physical basis of the 
ABI fire algorithm and how to use the output of this algorithm for a variety of fire applications.  
This includes a broad user community with various degrees of satellite expertise.  The diurnal ABI 
fire detection and characterization product expands on the current GOES WF_ABBA fire product 
which is utilized by an interdisciplinary user community in fire weather applications, hazards 
monitoring/assessment, resource management, global change research, land-use/land-cover 
change analyses, fire dynamics research, emissions monitoring and modeling, air quality, and 
transportation.  
 

1.3 Inside Each Section 

This document is broken down into the following main sections. 
 

 Observing System Overview: Provides relevant details of the ABI and provides a brief 
description of the products generated by the fire algorithm. 

 
 Algorithm Description: Provides a detailed description of the algorithm including its 

processing outline, inputs, outputs, and theoretical description. 
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 Test Data Sets and Outputs: Provides a description of the test data sets used to develop 
and implement the algorithm and characterize the performance of the algorithm.   

 
 Practical Considerations: Provides a brief overview of the issues relating to numerical 

computation, programming and procedures, quality assessment and diagnostics, exception 
handling, and algorithm validation.  

 
 Assumptions and Limitations: Provides an overview of the current limitations of the 

instrument and algorithm and possible avenues for addressing some of these limitations 
with further algorithm development. 

 

1.4 Related Documents 

This document may contain information from other GOES-R documents listed in the website 
provided by the GOES-R algorithm working group (AWG): 
http://www.star.nesdis.noaa.gov/star/goesr/  
 
In particular, readers are directed to these documents for further details on the algorithm, ABI, and 
requirements: 
 GOES-R Series Ground Segment Functional and Performance (November 2009) 
 GOES-R Series Mission Requirements Document (December 2007) 
 GOES-R Land Surface Team Critical Design Review (May 2008)  
  
Other related references are listed in the Reference Section. 
 

1.5 Revision History 

Version 0.1: Created by Elaine Prins (UW Madison SSEC/CIMSS Consultant) and Jay Hoffman 
(UW Madison SSEC/CIMSS), its intent was to accompany the delivery of the version 1.0 
algorithm to the GOES-R AWG Algorithm Integration Team (AIT).  
 
Version 1.0α: The delivered form of Version 0.1. 
 
Version 1.0β: Edited by Jay Hoffman and Chris Schmidt (UW Madison SSEC/CIMSS) and 
addressed recommended changes from the legacy document and conformed to the new outline 
template.  Edits were made in response to reviewer comments and results updated for the 80% 
algorithm package delivery. 
 
Version 2.0α: Edited by Jay Hoffman and Chris Schmidt (UW Madison SSEC/CIMSS) to address 
comments from Harris and other issues identified since the 80% delivery. 
 
Version 2.0: Edited by Chris Schmidt (UW Madison SSEC/CIMSS) to address AIT comments, 
update quality information and metadata listings, and reformatted clean up issues in prior 
documents. 
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Version 2.1: Edited by Chris Schmidt (UW Madison SSEC/CIMSS), includes updates and 
corrections to almost all sections based on Harris/AER review. 
 

Table 1.1 Version History 

Version Description Revised Sections Date 
0.1 New ATBD Document according to 

NOAA /NESDIS/STAR Document 
Guideline  

 6/20/2008 

1.0α New baseline document  9/30/2008 
1.0β Revised ATBD Document according 

to NOAA/NESDIS/STAR 
ATBDcontents_GOESR_AWG_v3_
31 Document 

Sections rearranged 
and updated to 
conform to new 
standards 

8/11/2009 

1.0 Revised document for 80% delivery Revisions made in 
response to reviewer 
comments and updated 
results 

9/18/2009 

2.0α Revised document for ADEB 
review, 100% delivery. 

All.  Revisions made 
in response to Harris 
comments 

7/28/2010 

2.0 100% delivery. All. 9/27/2010 
2.1 Revised per Harris/AER comments All. 7/11/2012 
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2 OBSERVING SYSTEM OVERVIEW  
This section provides an overview of the ABI observing system, including the objectives and 
characteristics of the ABI instrument as they pertain to the ABI fire product development and 
implementation. It also outlines the mission requirements, retrieval strategies and products 
provided by the ABI Wildfire Automated Biomass Burning Algorithm (WF_ABBA). 
 
The ABI fire algorithm is a dynamic, multi-spectral, thresholding contextual algorithm that uses 
the short-wave 0.64 μm (ABI Channel 2, when available during the daytime) and the 3.9 µm and 
11.2 µm bands (ABI Channels 7 and 14) to locate fires and retrieve sub-pixel fire characteristics.  
Channel 15 (12.3 µm) is used along with the aforementioned bands to help identify opaque clouds, 
but is not required for the algorithm to run.  Only Channels 7 and 14 are required for the fires 
algorithm.  The code uses a two-step approach to identify and characterize sub-pixel fires.   The 
first step (known historically as Part I) loops over all pixels and identifies potential fire pixels as 
well as block-out zones due to solar reflection and select surface types.  This initial pass also 
characterizes possible fire pixels when they meet certain criteria.  For each hot pixel the algorithm 
incorporates ancillary data to screen for false alarms, correct for water vapor attenuation, surface 
emissivity, solar reflectivity, and semi-transparent clouds.  The algorithm utilizes the Dozier 
technique to calculate sub-pixel estimates of instantaneous fire size and temperature (Dozier, 1981; 
Matson and Dozier, 1981).  Fire Radiative Power (FRP) is also calculated.  Fires are treated as a 
single sub-pixel entity of a certain size, temperature, and radiative power, an approximation that 
must be made given the fundamental limitations of retrieving sub-pixel properties.  The second 
step (known historically as Part II) loops over all possible fire pixels identified in Part I, additional 
thresholds are applied, and previous fire detections are used to filter out false alarms. 
 
The fire detection and characterization requirements defined by the document of Ground Segment 
Functional and Performance Specification (GS-F&PS) are listed in Table 2.1.  The measurement 
range of 275-400 K and accuracy values of 2.0 K represent the ABI Channel 7 (3.9 µm) input data 
that is needed to characterize fires.  No requirements are defined for fire detection and 
instantaneous sub-pixel fire characteristics (i.e. FRP and the coupled variables sub-pixel fire size 
and sub-pixel fire temperature).  Nevertheless, such outputs are expected by users of fire products 
along with a pixel mask of metadata.  Generation of these outputs is a part of the algorithm and is 
described in this ATBD. 
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Table 2.1 GOES-R mission requirements for fire detection and characterization 

Name 
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ata 
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Fire/Hot Spot 
Imagery 

Fire/Hot Spot 
Characterization 

C 2 km 1 km 

275 to 400 K 
for pixel 

brightness 
temperature for 
3.9 μm channel 

2.0 K 
brightness 

temperature 
within 

dynamic 
range 

5 min 5 min 
266 
sec 

2.0 K 

Fire/Hot Spot 
Imagery 

Fire/Hot Spot 
Characterization 

FD 2 km 1 km 

275 to 400 K 
for pixel 

brightness 
temperature for 
3.9 μm channel 

2.0 K 
brightness 

temperature 
within 

dynamic 
range 

 

15 min 15 min 
806 
sec 

2.0 K 

 

Table 2.2 Fire detection and characterization product qualifiers 

Name 
Temporal 
Coverage 
Qualifiers 

Product Extent 
Qualifier 

Cloud Cover 
Conditions Qualifier 

Product Statistics 
Qualifier 

Fire/Hot Spot Imagery 
Fire/Hot Spot 

Characterization 
Day and night 

Quantitative out to 
at least 65 degrees 

LZA and 
qualitative beyond 

If feature is obscured 
by thick clouds, 

product will not meet 
threshold 

measurement accuracy 

Over specified 
geographic area 

 

2.1 Products Generated 

The current operational version of the GOES WF_ABBA fire product, version 6.5 (v65) provides 
information on the location of the fire pixel; size of the pixel; estimates of instantaneous sub-pixel 
fire size, temperature, and radiative power; ecosystem type; and a classification flag.  In response 
to a request from the user community, additional information regarding satellite coverage, opaque 
cloud coverage, block-out zones, and processed regions is also provided.  This information, a kind 
of pixel level metadata and quality indicator, is used in real-time and offline model data 
assimilation and assessment studies (Prins, 2006).  
 
Dozier estimates of instantaneous sub-pixel fire size and temperature have long been used to 
determine emissions for aerosol and air quality modeling (Dozier, 1981; Matson and Dozier, 1981; 
Reid et al., 2004; Freitas et al., 2007).  In recent years modelers have also shown interest in utilizing 
fire radiative energy/power.  Fire radiative energy (FRE) and its time derivative FRP are by 
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definition related to the temperature and size of a fire.  The typical unit of FRE is Joules and FRP 
units are given in Watts (J/s) or Megawatts (1 MW = 106 W).  For a given material one may assert 
that the total FRE of a fire is directly related to mass consumed by that material’s heat of 
combustion, which can then be related to PM 2.5 and other emissions (Kaufman et al., 1998a; 
1998b; Wooster et al., 2003; Roberts et al., 2005).   
 
Version 6.5 of WF_ABBA, as applied to the current GOES series, Meteosat Second Generation 
(MSG) series, Multifunction Transport Satellite (MTSAT) series, and the future GOES-R ABI, 
provides fire detection, fire characterization, and metadata requested by the international user 
community (Dull and Lee, 2001; Justice and Korontzi, 2001).  The ABI fire algorithm output 
includes a pixel-by-pixel fire mask and properties for detected fires for each processed CONUS 
and full disk image.  The fire product is one product with associated properties for each fire, similar 
in a sense to how winds have directional components.  The fire properties calculated by the 
algorithm are coupled to each other, one cannot calculate an instantaneous fire size without 
estimating a fire temperature, and FRP is a function of size and temperature.  The fire mask codes 
(see Table 3.11) act as the Product Quality Information (PQI).  Each pixel has a flag indicating its 
classification if it is a fire.  Fires fall into six categories: saturated, processed, cloudy, high 
possibility, medium possibility, and low possibility.  Fires also are coded for whether they passed 
the temporal filtering test, a test designed to limit false alarms by trading off early detection for 
increased confidence that a fire has been detected.  If it was not found to be a fire, the code indicates 
the reason, such as which cloud test the pixel failed, whether the pixel was in a solar block-out 
zone or over water, and so on. 
 
Fire processing is limited to data within a satellite viewing angle of 80° (best results are found 
within 65°) areas excluding certain biome types and regions of sun glint.  Although the ABI fire 
algorithm will attempt to find fires in both clear and cloudy conditions, opaque clouds will often 
mask the fire signal in the satellite data, rendering it undetectable.  The output is described in 
greater detail in Section 3.4.3 and Section 4.2. 
 

2.2 Instrument Characteristics 

The next generation GOES-R ABI offers a number of enhancements for fire monitoring.  The ABI 
will provide full disk coverage every 15 minutes and CONUS coverage every 5 minutes to ensure 
that even short-lived burning can be monitored.  With the improved spatial resolution (2 km) on 
ABI in the short and long-wave infrared window bands (3.9 µm  and 11.2 µm – Channels 7 and 
14), the minimum detectable size of a fire burning at an average temperature of 800 K is 
approximately 0.004 km2 at the sub-satellite point in clear sky conditions.  The elevated saturation 
temperature of 400 K in the 3.9 µm band (Channel 7) limits the number of saturated fire pixels to 
less than 5% of all observed fires.  GOES-R ABI fire products will be complementary to those 
derived from higher spatial resolution polar orbiting satellites, providing a more complete picture 
of burning in the Western Hemisphere.  Furthermore, even with a spatial resolution of 2 km, 
diurnal high temporal GOES-R ABI fire products allow for the possibility of capturing a small fire 
event at peak burning. 
 
For fire monitoring the current ABI WF_ABBA provides channels that are spectrally similar to 
the operational WF_ABBA for current GOES Imagers, Met-8/-9 SEVIRI, and MTSAT-1R/-2, as 
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shown in Figure 2.1.  Fire detection is based on comparisons of the Channel 7 (3.9 μm) and 
Channel 14 (11.2 μm) brightness temperatures.  Short-wave Channel 2 (0.64 μm) and long-wave 
Channel 15 (12.3 μm) add value through cloud identification and improved fire-free background 
temperature determination, however the ABI WF_ABBA is capable of running with a minimum 
of Channels 7 (3.9 µm) and 14 (11.2 µm). 

 
Figure 2.1 IR band spectrums for GOES-R ABI, MSG SEVIRI, GOES-8 and GOES-12.  
The primary long-wave and short-wave IR window bands used for fire monitoring are circled 
in green and red, respectively. 
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Table 2.3 Spectral characteristics of Advanced Baseline Imager 

ABI spectral characteristics 

Band 
Number 

Wavelength 
(μm) 

Bandwidth 
(μm) 

NEDT/SNR 
Upper Limit 
of Dynamic 

Range 

Spatial 
Resolution 

Used 
in 

ABI 
Fire 
Code 

1 0.47 0.45 – 0.49 300:1[1] 
652 

W/m2/sr/μm 
1 km   

2 0.64 0.59 – 0.69 300:1[1] 
515 

W/m2/sr/μm 
0.5 km O 

3 0.86 
0.8455 – 
0.8845 

300:1[1] 
305 

W/m2/sr/μm 
1 km  

4 1.38 
1.3705 – 
1.3855 

300:1[1] 
114 

W/m2/sr/μm 
2 km  

5 1.61 1.58 – 1.64 300:1[1] 
77 

W/m2/sr/μm 
1 km  

6 2.26 2.225 – 2.275 300:1[1] 
24 

W/m2/sr/μm 
2 km  

7 3.9 3.8 – 4.0 0.1 K[2] 400 K 2 km  
8 6.15 5.77 – 6.60 0.1 K[2] 300 K 2 km  
9 7.0 6.75 – 7.15 0.1 K[2] 300 K 2 km  

10 7.4 7.24 – 7.44 0.1 K[2] 320 K 2 km  
11 8.5 8.30 – 8.70 0.1 K[2] 330 K 2 km  
12 9.7 9.42 – 9.80 0.1 K[2] 300 K 2 km  
13 10.35 10.10 – 10.60 0.1 K[2] 330 K 2 km  
14 11.2 10.80 – 11.60 0.1 K[2] 330 K 2 km  
15 12.3 11.80 – 12.80 0.1 K[2] 330 K 2 km O 
16 13.3 13.0 – 13.6 0.3 K[2] 305 K 2 km  

 [1] 100% albedo, [2] 300 K scene.    Check marks indicate required bands used for ABI fire retrieval, O marks bands 
that are not required but are used when available. 
 
The ABI WF_ABBA utilizes a variety of spectral, contextual and temporal tests.  The performance 
of the fire algorithm is sensitive to instrument noise and other anomalies (striping, etc.).  For 
subpixel fire characterization the algorithm requires well-calibrated data from the cold to very hot 
brightness temperatures.  The NEdT for the 3.9 µm band is less than 0.5 K for temperatures greater 
than 330 K, but there is no linearity required beyond 375 K. The NedT beyond 375 K is probably 
closer to 2 K which would greatly impact sub-pixel fire characterization.  Other instrument related 
issues that significantly affect the fidelity of the WF_ABBA fire product are saturation of sub-
pixel detector samples, sampling/regridding protocols, and the characteristics of the sensor’s Point 
Spread Functions (PSFs). 
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3 ALGORITHM DESCRIPTION 

This section provides a description of the algorithm. 

3.1 Algorithm Overview 

Beginning with the first generation of satellite fire detection algorithms, the Automated Biomass 
Burning Algorithm (ABBA) was able to monitor fires with the GOES 4-7 VAS (Visible Infrared 
Spin Scan Radiometer (VISSR) Atmospheric Sounder) dating back to the early 1980s.  
Development continued as new GOES Imagers became available starting with GOES-8 through 
the current generation of GOES Imagers. Since the year 2000, the GOES WF_ABBA has been 
providing half-hourly diurnal fire products for the Western Hemisphere in near real-time.  The 
software was transitioned to NESDIS operations in 2002.  In spite of the relatively coarse 
resolution of the current GOES Imager (4 km at nadir) and associated limitations in fire detection 
and characterization, the WF_ABBA user community has greatly expanded over the past five 
years.  Numerous peer-reviewed publications show that user applications include hazards 
monitoring, climate change research, land-use/land-cover change studies, resource management, 
biomass burning emissions modeling, diagnostic and prognostic aerosol and trace gas modeling, 
and policy and decision making (Nepstad et al., 2001; 2006; Cardosa et al., 2003; Schmidt and 
Prins, 2003; McNamara et al., 2004; Freitas et al., 2007; Wang et al., 2006; Weaver et al., 2004).   
Within the United States biomass burning is a source of aerosols and precursors to ozone formation 
that must be monitored as mandated by the Clean Air Act with specific PM 2.5 (particulate matter 
that is 2.5 µm or smaller in size) regulations defined under the 1997 amendment.  Biomass burning 
from both wildfires and agricultural burning remains one of the largest unknowns in source 
emissions in the U.S.  Applications of the GOES WF_ABBA in model data assimilation studies 
have shown the importance of incorporating real-time diurnal fire products (both fire location and 
sub-pixel characteristics) in aerosol transport and air quality models to correctly diagnose and 
predict air pollution (Reid et al., 2004; Al Saadi et al., 2005; Freitas et al., 2007; Wang, et al., 
2006).   
 
GOES-R ABI fire detection and characterization is a fundamental component of the GOES-R ABI 
processing system. The fire detection and characterization algorithm is being developed within the 
GOES-R AWG land team as part of the land module processing subsystem (Figure 3.1). 
 
The ABI fire algorithm is an extension of the GOES Wildfire Automated Biomass Burning 
Algorithm (Prins and Menzel, 1992; 1994; Prins et al., 1998; 2001; 2003; Schmidt and Prins, 
2003).  The specific objectives of ABI fire detection and characterization algorithm development 
are listed below. 
 

• Adapt current GOES WF_ABBA to GOES-R ABI taking advantage of the increased 
monitoring capabilities of the ABI for fire detection and characterization. 

• Address needs of international user community and meet GOES-R fire product mission 
requirements. 

• Provide smooth transition from current GOES/MODIS to the next generation ABI/VIIRS.   
• Ensure continuity/consistency of a long-term (1995-GOES-R era) geostationary fire data 

base. 
• Incorporate flexibility for enhancements as demonstrated with GOES-R research. 
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• Implementation simplicity and operational robustness. 
 
The GOES-R ABI allows for nearly continuous earth observation with an instantaneous ground 
field of view (IGFOV) at nadir for the visible band and 2 km for the infrared bands. Multi-spectral 
ABI data will be available every 5 minutes over the continental United States with full disk 
coverage of the Western Hemisphere every 15 minutes.  GOES-R ABI offers enhanced 
opportunities to capture fires as they occur with the capability for early detection of rapidly 
growing fires and diurnal high-temporal monitoring of subpixel fire characteristics.  The GOES-
R ABI fire algorithm builds on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) 
processing system developed at the University of Wisconsin (UW) Cooperative Institute for 
Meteorological Satellite Studies (CIMSS) as a collaborative effort between 
NOAA/NESDIS/STAR and UW-CIMSS personnel.  The GOES WF_ABBA has been running in 
real-time since 2000 and operationally in NESDIS since 2002 (McNamara et al., 2004; Schmidt 
and Prins, 2003).   
 

 
Figure 3.1 Products and dependencies of the land algorithm module. 
 
The ABI fire algorithm is a dynamic multispectral thresholding contextual algorithm that uses the 
shortwave Channel 2 (when available during the daytime), Channel 7 (3.9 μm), and Channel 14 
(11.2 μm) infrared window bands to locate and characterize hot spot pixels.  Channel 15 (12.3 µm)  
is used along with the other fire bands to help identify opaque clouds. The fire detection algorithm 
is based on the sensitivity of the 3.9 μm band to high temperature sub-pixel anomalies compared 
against the less sensitive longer wavelength IR window bands, specifically the 11.2 μm band, and 
is derived from a technique originally developed by Matson and Dozier (1981) for data from 
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NOAA’s Advanced Very High Resolution Radiometer (AVHRR).  The shortwave “visible” band, 
Channel 2, when available, improves the cloud screening and establishes the surface albedo value 
which aids in reducing the effects of solar contamination in the 3.9 μm band (Channel 7). 
The contextual nature of the algorithm refers to the processes where neighboring pixels are used 
to help identify hotspots and the number of pixels considered varies as the window is allowed to 
expand until enough cloud-free background land pixels free of thermal anomalies are identified.  
The background window does not increase without limit and can only reach a size of 105 by 105 
pixels.  The algorithm incorporates statistical techniques such as mean, standard deviation, and 
histogram approaches to automatically identify hot spot pixels in the ABI imagery while limiting 
the number of false detections.  Similarities with current MODIS (Giglio et al., 2003) and proposed 
VIIRS fire algorithms offer good transition from the current GOES/MODIS to the next generation 
ABI/VIIRS.  This will also ensure continuity and consistency of a long-term geostationary fire 
database.  
 
Once the GOES-R ABI WF_ABBA locates a hot spot pixel, it incorporates ancillary data in the 
process of screening for false alarms and correcting for water vapor attenuation, surface emissivity, 
solar reflectivity, and semi-transparent clouds.  A rudimentary correction is also included to correct 
for diffraction.  Various land, desert, and coastal masks are used to screen out non-fire regions and 
regions that are known to be highly reflective and to assist in eliminating false alarms.  The NCEP 
model total column precipitable water products are utilized to correct for water vapor attenuation.  
Numerical techniques are used to determine instantaneous estimates of subpixel fire size and 
average temperature using a modified Dozier (1981) technique.  For more information on the 
heritage GOES algorithm and the determination of subpixel fire characteristics, refer to Prins and 
Menzel (1992; 1994) and Prins et al. (1998; 2001; 2003). 
 
The GOES ABI fire product will be produced for each ABI image and provides diurnal fire 
detection and sub-pixel fire characterization (e.g. instantaneous estimates of sub-pixel fire size, 
temperature, and FRP) for data within a satellite view angle of 80 degrees.  The final user output 
consists of a fire product providing a pixel-by-pixel mask indicating fire locations and 
categorizations as well as information on how the algorithm made decisions about all over pixels.  
For each fire of the appropriate types, instantaneous estimates of fire size and temperature, and fire 
radiative power are also provided.  In response to user community requests for backwards 
compatibility, the reference code contains a processing option to produce a tailored ASCII fire 
product as well. 
 

3.2 Processing Outline 

Figure 3.2 provides a high level flowchart of the GOES-R ABI fire detection and characterization 
algorithm. The code uses a two-step approach.  The first step, a loop over all pixels, aka Part I, 
identifies and records block-out zones and conducts an initial pass over all pixels identifying and 
characterizing all remotely possible fire pixels.  The second step, a loop over the fires from the 
first step, aka Part II, further evaluates possible fire pixels.  Additional thresholds are applied in 
Part II, and when available fire detections from the previous 12 hours is used as a temporal filter 
to screen out false alarms anomalies in the high temporal resolution data.   
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Figure 3.2 High Level Flowchart of the ABI WF_ABBA fire code illustrating the main 
processing sections. 
 
Figure 3.3 illustrates the GOES-R ABI fire algorithm in more detail.  The following subsections 
describe each component of the flowchart presented in Figure 3.3.  Refer to Table 3.4 for a 
description of several terms used throughout the documentation.  The term “Reflectivity Product” 
refers to the approximation of reflectivity in the 3.9 µm band using the 11.2 µm temperature that 
has been converted to 3.9 µm “space” by using the 11.2 µm brightness temperature (calculated 
from 11.2 µm  radiance corrected with its estimated emissivity) as the Planck body temperature to 
calculate the 3.9 µm radiance, correct with its emissivity, and calculate the 3.9 µm brightness 
temperature that results.  The assumption is that this calculation does not include the reflected solar 
energy at 3.9 µm and thus differencing this calculated value with the observed 3.9 µm value yields 
an estimate of the reflected energy. 
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Figure 3.3 Flowchart depicting the primary components of Parts I (loop over all pixels) 
and II (loop over fire pixels) of the GOES-R ABI fire detection and characterization 
algorithm. 
 

3.2.1 Loop over all pixels, aka Part I 

Preliminary determination of fire pixels and their characteristics are made during a loop over all 
pixels within the processing region.  When a potential fire is located, the fire algorithm utilizes the 
non-fire clear-sky multi-spectral (3.9 µm and 11.2 µm – Channels 7 and 14  respectively) data 
surrounding the pixel being evaluated to determine background characteristics and fire thresholds.  
If available, the 0.64 µm and 12.3 µm (Channels 2 and 15 respectively) are used to enhance opaque 
cloud detection.  The algorithm then proceeds through a multi-layer decision tree to determine if 
a pixel is a possible fire pixel by comparing the pixel and its relationship to the background to 
these fire thresholds.  Pixels that fail certain tests are given a “second chance” later in the decision 
tree of Part I to become a possible fire pixel. 
 

3.2.2 Loop over all fire pixels, aka Part II 

Part II of the algorithm further refines the fire product by looping over the possible fire pixels 
identified in Part I.  Additional thresholds are used to eliminate “non-fire” hot-spots.  A 
classification is assigned to each fire.  There are a total of twelve classifications, six that apply to 
fires seen only in that time period and six that were detected during a previous run of the fire code.  
Those six basic categories are: processed fire, saturated fire, cloudy fire, high possibility fire, 
medium possibility fire, and low possibility fire.  Those six categories apply to both the fires that 
passed the temporal filter and those that did not.  In all cases, the fire characteristics output by the 
algorithm are those of the current, most recent fire. 
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There are instances where all possible fire pixels in Part I pass the thresholds in Part II, however 
there are other instances where the list of possible fire pixels produced by Part I may contain many 
non-fire “hot spot” pixels that do not pass all of the necessary fire tests in Part II and therefore do 
not appear as fires in the final user products. 
 
Algorithm Input 
This section describes the input needed to process the GOES-R ABI fire product.  While the fire 
code is applied to each pixel to locate fire pixels, it is a contextual algorithm and requires 
knowledge of the surrounding pixels.  In its current implementation, the code can require a window 
of up to 211 scan lines/elements centered on the pixel being evaluated.  While the final size of the 
surrounding window is to be determined, the fire code is not designed to run with information from 
only one pixel and performance degrades along the image border when the algorithm encounters 
invalid data once the background window extends beyond edge of the image. 
 

3.3.1 Primary Sensor Data 

Table 3.1 lists the primary sensor data used by the fire code.  By primary sensor data, we mean 
information that is derived solely from the ABI observations and geolocation information.  For 
each pixel the GOES-R ABI WF_ABBA requires calibrated and navigated ABI brightness 
temperatures/radiances, solar-view geometry (satellite zenith, relative azimuth, solar zenith), and 
ABI sensor quality flags.  Channels 7 and 14 are required.  Channels 2 and 15 are optional and 
when available add robustness to the algorithm.  In Table 3.1 and throughout this document, xsize 
and ysize refer to the dimensions of the data being processed. 
 

Table 3.1 Input list of required sensor data 

 

3.3.2 Ancillary Data 

The following tables (Tables 3.2 and 3.3) list and briefly describe the non-ABI dynamic and static 
ancillary data required to run the GOES-R ABI WF_ABBA.  By ancillary data, we mean 
information not included in the ABI observations or geolocation data.  Dynamic ancillary data 

Required sensor data 
Name Type Description Dimension 

Ch2 visible 
brightness/albedo 

input 
Calibrated ABI level 1b reflectance, sampled to 2 
km 

Scan grid (xsize, 
ysize) 

Ch7 brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness temperatures 
and radiances for Channel 7 

Scan grid (xsize, 
ysize) 

Ch14 brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness temperatures  
and radiances for Channel 14 

Scan grid (xsize, 
ysize) 

Ch15 brightness 
temp/radiances 

input 
Calibrated ABI level 1b brightness temperatures  
and radiances for Channel 15 

Scan grid (xsize, 
ysize) 

Solar geometry input ABI solar zenith angle 
Scan grid (xsize, 
ysize) 

View angles input ABI view zenith and relative azimuth angles 
Scan grid (xsize, 
ysize) 

QC flags input ABI quality control flags with level 1b data 
Scan grid (xsize, 
ysize) 
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refers to data sets that change over time, while static ancillary data refers to data sets that remain 
constant over time.  Ancillary data is remapped to the ABI scan grid by using a nearest-neighbor 
approach.  Unless otherwise noted, ancillary data is described in the AIADD. 
 
Total Precipitable Water (TPW) is used to estimate attenuation of the long-wave infrared radiance 
by water vapor in the atmosphere.  Surface emissivity is used to correct for various surface types 
since some are more likely to appear as false alarm fires.  The previous fire product file contains, 
for each ABI pixel, the time in seconds since 1 January 2001 for the last fire detected at that 
location.  This is used for temporal filtering. 
 

Table 3.2 Input list of required non-ABI ancillary dynamic data 

 

Table 3.3 Input list of required non-ABI ancillary static data 

 

3.3.3 Derived Data 

The ABI fire algorithm utilizes a file for temporal filtering that contains for each ABI pixel location 
the time in seconds since 1 January 2001 when the algorithm last detected a fire at that location.  
This information must be available for temporal filtering to function properly. 
 

Dynamic non-ABI ancillary data 
Name Type Description Dimension 

Total Precipitable 
Water (TPW) 

input NCEP TPW 6 hour forecast data 0.25 deg resolution 

Global Emissivity input 
MODIS monthly mean IR land surface emissivity 
for Channels 7 and 14 

0.05 deg resolution 

Previous fire 
product file 

input 

A mask of times, in seconds since 1 January 2001, 
when fire occurred at each ABI image coordinate.  
Previous output fire product file is used for 
temporal filtering and updated while processing 
each image 

full disk resolution 

Static non-ABI ancillary data 
Name Type Description Dimension 

Global Land Cover input 

Global land cover classification collection 
created by UMD (Hansen et al., 2000).   
14 land cover classes, created from AVHRR 
data collected from 1981-1994 

1 km resolution 

Land/Sea Mask input 
Global 1-km land/water mask used for 
MODIS collection 5 

0.05 deg resolution 

Desert Mask input 
Global 1-km land/water mask used for 
MODIS collection 5 

0.05 deg resolution 

TPW offset look-up 
table 

input 
Lookup table of offsets to adjust radiances for 
total precipitable water 

Offsets for combinations of 
variable TPW at variable TPW 
at various local zenith angles 



 

 16

3.4 Theoretical Description 

Fire detection and characterization involves both distinguishing fire pixels from non-fire pixels 
and providing information on the sub-pixel characteristics of the fire complex contained in the 
pixel. By necessity all if the fires within a pixel are treated as one, so the derived characteristics 
represent the net output of all burning material in the field of view.  The ABI fire algorithm is a 
dynamic, multi-spectral, thresholding contextual algorithm that uses spectral, spatial and temporal 
tests to identify fire pixels by comparing a given pixel with the radiometric characteristics of the 
non-fire background pixels.  The visible (when available), 3.9 µm and 11.2 µm bands are used to 
locate fire pixels and characterize sub-pixel fire characteristics.  Those bands and the 12.3 µm 
(when available) band are used to help identify regions of opaque clouds where fire 
detection/characterization is inhibited. 
 

3.4.1 Physics of the Problem 

Environmental satellite fire detection primarily utilizes visible and infrared window observations 
to detect smoke plumes and hot spots, respectively. Both shortwave (~4 µm) and longwave (~11 
µm) infrared window data are used to detect active fires (Dozier, 1981; Matson and Dozier, 1981; 
Prins and Menzel, 1992; 1994; Giglio et al., 2003).  Although both windows can be used to sense 
the earth’s surface, the shortwave infrared region is less affected by atmospheric water vapor 
attenuation and is more sensitive to fires that are smaller than the instrument pixel size, often 
referred to as sub-pixel fires. Figure 3.4 shows that as the temperature of the sub-pixel anomaly 
increases, the peak of the Planck Function shifts toward shorter wavelengths, so the radiance 
contribution increases more rapidly in the shortwave infrared window than the longwave infrared 
window region. The different response in the ABI 3.9 µm and 11.2 µm infrared windows provides 
the framework for identifying sub-pixel fires in infrared imagery. 
 
Figure 3.5 shows an example of utilizing the GOES-8 3.75 µm and 10.8 µm data to detect fires 
along the transition zone between forest and savanna in northeastern Brazil.  Typically the clear-
sky shortwave and longwave infrared window observations show brightness temperature 
differences on the order of 2-5 K due to reflected solar radiation, surface emissivity differences, 
and water vapor attenuation. Larger differences occur when one part of a pixel (p) is substantially 
warmer than the rest (1-p).  The hotter portion of the pixel (p) will contribute more radiance in 
shorter wavelengths than in the longer wavelengths.  Figure 3.5 shows a scan line extending from 
the cooler rain forest through the transition zone into the savanna.  Both the ~4 µm and ~11 µm 
bands show a general increase in observed brightness temperatures along the scan line, but at 
various locations the ~4 µm band records a local peak.  These peaks may or may not be associated 
with sub-pixel fire activity.  The function of the WF_ABBA is to first distinguish between fire 
pixels and other warm anomalies and then to characterize the sub-pixel fire activity once a fire 
pixel is identified.   (Prins and Menzel, 1992; 1994; Prins et al., 1998; 2001; 2003). 
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Figure 3.4 Planck blackbody radiances for temperature intervals ranging from 300 K to 
700 K.  For a given increase in temperature, the relative increase in area under the curve for 
the 3.75 µm band is greater than the 10.8 µm band.  The 3.9 µm and 11.2 µm bands behave 
the same. 
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Figure 3.5 Overview of fire detection using the short (4 µm) and long-wave (11 µm) 
infrared window bands. 
     

3.4.2 Mathematical Description 

The ABI fire algorithm employs a series of tests and corrections to arrive at a determination if a 
pixel is a fire and if fire characteristics should be derived.  This section breaks down the steps of 
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the algorithm into its constituent mathematical operations.  Table 3.4 contains a legend for symbols 
used throughout this section. 
 

Table 3.4 Legend for algorithm acronyms used in decision tree tests 

Legend for algorithm terms 
Term Definition 

T3.9, T11.2, T12.3 
3.9 (Channel 7), 11.2 μm (Channel 14), and 12.3 μm (Channel 15) observed brightness 
temperatures 

Tb3.9, Tb11.2 3.9 (Channel 7) and 11.2 μm (Channel 14) background brightness temperatures 

T3.9c, T11.2c 
Observed brightness temperatures corrected for atmospheric transmittance, emissivity, 
solar reflectivity, thin clouds/smoke 

Tbc 
Background temperature estimate corrected for atmospheric transmittance, emissivity, 
solar reflectivity, thin clouds/smoke. This is equivalent to the corrected Tb11.2, and is 
used for tests with both Channels 7 and 14. 

T3.9min Minimum 3.9 μm (Channel 7) threshold for consideration as a fire 

Refl 
‘Reflectivity Product’: 3.9 µm (Channel 7) radiance minus 11.2 μm (Channel 14) 
radiance differences in 3.9 μm “space”. Stored as the nearest integer of 10 times the 
difference. 

Refl-2, Refl+2 
‘Reflectivity Product’ two pixels to the left and two pixels to the right, respectively, of 
current pixel 

Refl-3, Refl+3 
‘Reflectivity Product’ three pixels to the left and three pixels to the right, respectively, 
of current pixel 

Reflb ‘Reflectivity Product’ using mean background radiances values 
T3.9ReflThreshold Threshold temperature for ‘Reflectivity Product’ 

Albedo 
Channel 2 (visible) reflectance factor divided by the cosine of the local solar zenith 
angle 

Tt Instantaneous target temperature of the sub-pixel fire(s) 
p Instantaneous proportion of pixel on fire 
FRP Fire radiative power 
BG Offset Offset to account for expanding background window size 
Std. Dev. Standard Deviation (of pixels within background window) 
FailChar A flag to indicate why a fire failed to be categorized 

 

3.4.2.1  Input ABI and ancillary data 

The ABI input data is detailed in Table 3.1 of this document.  The ABI inputs are the reflectance 
in band 2 (sampled to 2 km) and brightness temperatures from bands 7, 14, and 15 (bands 2 and 
15 are not required but are used if available).  Information about each pixel is also needed: latitude, 
longitude, solar zenith angle, solar glint angle, and ABI data quality flags.  Data from each 
band/channel should be calibrated and special consideration taken for the hot end of the 3.9 µm 
band.  The data should be manipulated as little as possible aside from calibration and navigation.  
This algorithm was designed assuming that the Level 1B ABI data would be remapped.  Due to 
the remapping, ABI pixels containing saturated ABI samples must be flagged for the algorithm to 
perform to user expectations.  Ancillary input data are dynamic and static (See Section 3.3 for 
more details).  Dynamic data includes NCEP model TPW and UW BF emissivity.  Static input 
data includes:  global land cover, land/sea mask, desert mask, and a TPW offset look-up table for 
adjusting brightness temperatures.  All data must be available at the pixel level.  In cases where 
interpolation is necessary nearest-neighbor is used. 
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3.4.2.2  Calculate radiance differences 

Before searching for fires, the algorithm calculates the band 7 minus band 14 radiance difference 
in band 7 space for all pixels and stores that as the nearest integer value of 10 times the difference.  
In this step only space pixels are screened out.  This radiance difference, a form of the traditional 
“fog product” (which is also known as the “reflectivity product”), is background information for 
several tests within the fire algorithm.  This value will be referred to as “Refl” in this section.  If 
the radiances for either band 7 or 14 are found to be negative, the value “Refl” is set to -9999. 
 

3.4.2.3  Test data against thresholds 

Once the Refl has been calculated the primary loop over all pixels (aka Part I) begins.  Several 
threshold tests are employed to screen out pixels for various reasons, which are then recorded to 
the fire mask.  The fire mask for any non-space pixel is initialized to a value of 100, indicating a 
fire-free pixel that passed all threshold tests.  Space pixels are assigned a code of 40. 
 
The first test is the satellite zenith angle (SZA) threshold test.  If the pixel’s SZA is greater than 
the threshold of 80º, the pixel is assigned a code of 50 and the algorithm proceeds to the next pixel. 
 
Sun glint causes false alarms and as a result the primary and secondary regions of solar reflection 
are blocked out from fire processing.  The algorithm screens potential sun glint regions defined as 
pixels with a SZA of < 10˚.  These pixels represent the sub-solar point on the Earth.  The other 
region of reflection is the region around the ray drawn from the satellite, reflected off the Earth to 
the center of the Sun.  This is the Glint Angle and it is also flagged as a block-out zone if the value 
is < 10˚.  In both cases for solar reflection the fire mask code is set to 60. 
 
A solar logic flag indicating the pixel is sunlit is set if the solar zenith angle is greater than or equal 
to 0˚ and less than or equal to 85˚.  If Channel 2 (0.64 µm) is available the Channel 2 reflectance 
is divided by the cosine of the solar zenith angle.  If proxy data generated from MODIS is used, it 
is necessary to divide the Channel 2 reflectance by 100. 
 
A bad pixel is defined as a pixel with a Channel 7 or 14 brightness temperature equal to the system-
defined missing value or a channel brightness in excess of 5 K over the system-defined channel 
saturation temperature.  Missing Channel 7 brightness temperature is coded with 120 in the fire 
mask, missing Channel 14 is coded with 121.  Channel 7 above the saturation temperature plus the 
buffer (5 K) is coded with 123.  Channel 14 above the saturation temperature plus the buffer (5 K) 
is coded with 124.  An unusable pixel has a Channel 7 or 14 brightness temperature less than 200 
K and is coded with 126 and 127, respectively. 
 
The algorithm uses the desert, surface, ecosystem and land masks provided by the framework and 
described in the AIADD.  The following provides the mapping of which ancillary surface dataset 
values are considered invalid surface types: 
 
Code 150 (invalid ecosystem type) assigned for the following conditions: 

• MODIS Land mask = deep, moderate, and shallow ocean; shallow and deep inland water 
(values 7,6,0,3,5 respectively) 

• UMD Surface type = "water" (0) 
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• Derived Desert mask = "bright desert" (2) 
• Any of for immediate neighbors is invalid ecosystem type (Code 150) 

Code 151 
• USGS Ecosystem type = sea water (15) 

Code 152 
• USGS Ecosystem type = "coast line fringe" (80), "compound coast line" (85) 

Code 153 
• USGS Ecosystem type = "Inland water"(14), "Water and Island Fringe"(73),  "Land, 

Water, and Shore"(74), "Land and Water, Rivers" (75) 
 
All other land, surface, desert and ecosystem types are considered valid surface pixels. 
 
Once the block-out zone tests have been run, a data quality check is performed.  If the observed 
radiance in Channel 7 or Channel 14 for the current pixel is less than zero the fire mask code is set 
to 125 and the code advances to the next pixel.  Next the difference between observed Channel 7 
and Channel 14 brightness temperatures is tested against a threshold of 2 K.  This test is a minimum 
threshold for fire activity and does not incorporate the radiance transformation used when 
calculating Refl. 
 
Prior to further testing, the minimum threshold for Channel 7 brightness temperature, T3.9min, and 
the threshold for the Refl tests to come, T3.9ReflThreshold, are set based on the time of day: 

 T3.9min = 285 K night 
 T3.9min  = [285 +15*cos(solar zenith angle)] K daytime 
 T3.9Reflthreshold = 315K night 
 T3.9ReflThreshold  = [315 +5*cos(solar zenith angle)] K daytime 

These adjustments raise the thresholds during the day with a maximum at noon. 
 
Several tests are then performed for opaque clouds, accounting for different viewing conditions 
and available bands.  These cloudy pixels MAY be found to contain fires later.  Each test is 
predicated on a prior test having been passed (the pixel must still retain a mask code of 100).  Mask 
codes are assigned and a flag for clouds set to true if any of these tests is true: 

 T11.2  < 270 K  (mask code 200, set “cloudy flag”) 
 T3.9 – T11.2   <  -4 K  (mask code 205, set “cloudy flag”) 
 If proxy data is from MODIS: 

o T3.9- T11.2  > 20K  
AND 

o [  T3.9 <  285 K    OR    T11.2 < 280 K ] (mask code 210, set “cloudy flag”) 
 Other proxy data: 

o T3.9- T11.2  > 20K  
AND 

o T3.9 <  285 K  (mask code 210, set “cloudy flag”) 
 If daytime pixel, use a Channel 2 test: 

o Solar zenith angle <= 70˚ OR (Solar zenith angle <= 60˚ AND local zenith 
angle <= 60˚) 
 Albedo > 0.28  (mask code 215, set “cloudy flag”) 

 If Channel 15 is available: 
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o T12.3 <= 265 K  (mask code 220, set “cloudy flag”) 
o T11.2 < 270 K  AND  T11.2- T12.3  < -4 K  (mask code 225, set “cloudy flag”) 
o T11.2 < 270 K AND  T11.2- T12.3  > 60 K  (mask code 230, set “cloudy flag”) 

 

3.4.2.4  Along scan reflectivity test 

This test is followed by an along scan reflectivity product difference test that is used to check for 
nearby cloud edges.  The Refl of the current pixel is compared to the Refl of the pixels three 
positions to the left (Refl-3) and three positions to the right (Refl+3) to see if it exceeds the threshold 
value of 2 (which is actually 0.2 radiance units, see definition of Refl).  This test is also run if the 
albedo is above its threshold, to account for warm daytime clouds that can be detected with 
Channel 2:  

 T3.9  < 320 K  AND  T3.9 < T3.9min  AND  T3.9 >= 150 K 
o Refl-3 < 2  OR  Refl+3 < 2  (mask code 240, proceed to next pixel) 

 If daytime pixel: 
o Albedo >= 0.28  AND  T3.9  < 320 K 

 Refl-3 < 2  OR  Refl+3 < 2  (mask code 245, proceed to next pixel) 
 
If the Fire Mask Codes are set to 240 or 245, the algorithm proceeds to processing the next pixel.  
After passing these tests the algorithm has completed its cloud tests and continues on to saturation 
tests.  A saturated pixel flag, much like the cloudy pixel flag, is set if the conditions are met.  
Notably, no mask codes are set at this point.  This differs from the earlier test which tested for 5 K 
above the system-defined saturation temperature of Channels 7 and 14.  In this case, if the current 
pixel temperature in Channels 7 or 14 is greater or equal to than 399.9 K and 329.9 K (assuming 
system-defined specified saturation temperatures of 400 K and 330 K minus 0.1 K, respectively), 
the saturated pixel flag is set.  If the saturation temperatures of the bands are out of specification, 
the threshold should reflect the actual saturation temperature minus 0.1 K.  An additional flag, 
FailChar, is set to 7 indicating why the fire was not characterized.  The values for FailChar are in 
Table 3.5.  Many entries in Table 3.5 are explained in the following sections. 

Table 3.5 Values of failed fire characterization flag 

FailChar Definition 

1 
Channel 7 minus Channel 14 brightness temperature within standard deviation of 
background values or Refl check failed. 

2 
Channel 7 minus Channel 7 background brightness temperature within standard deviation 
or Refl check failed. 

3 
Channel 7 or Channel 14 adjusted brightness temperatures less than thresholds (T3.9min and 
285 K, respectively) 

4 
Channel 14 adjusted brightness temperature differs from unadjusted Channel 14 brightness 
temperature by < 0.25 K 

5 Adjustment to Channel 7 brightness temperature less than 2.0 K 
6 Estimated sub-pixel fire temperature < 400 K 
7 The pixel was saturated 

8 
If Channel 2 is available and the pixel is sunlit and the difference between pixel Albedo and 
background Albedo is > 0.07.  This allows a second chance test for fires that might actually 
be sunglint. 

9 If fire has FailChar=8 and the estimated sub-pixel fire temperature is less than 400 K. 

10 
Channel 14 adjusted brightness temperature differs from unadjusted Channel 14 brightness 
temperature by < 0.25 K and the pixel is cloudy (Albedo > 0.15 or the cloud flag is set) and 
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the adjustment to Channel 7 brightness temperature was greater than 10 K. This value is 
chosen if the Fire Mask Code is 200, 205, 210, 215, 220, 225, or 230. 

11 
Indicates that the potential fire is actually a fog or cloud edge scenario. Set only in Part II 
of the algorithm. 

 

3.4.2.5  Determine background condition statistics 

Once the initial quality and cloud tests have been passed, the algorithm calculated background 
stastitics.  Background statistics are updated along a given scan line; the calculation is skipped if 
the background statistics were calculated for the previous element.  The background for a given 
pixel is defined by a dynamic window centered on the pixel being considered.  The window 
expands in size until at least 20% of the pixels within the window are free of clouds and anomalous 
hot spots.  When the pixel of interest is near a boundary and the window expands beyond the image 
domain, the out of bounds pixels will never be valid pixels, but still count towards the size of the 
background window.  The window size may become quite large; the window expands as a square 
with each iteration including an additional 5 lines and 5 elements in each direction for a maximum 
of 20 iterations (for a maximum of 201 x 201 pixels).  If it reaches the maximum number of 
iterations without finding 20% cloud and anomalous hot-spot free pixels, then further fire 
processing is aborted for the pixel, the fire mask code set to 170, and processing moves on to the 
next pixel.  For the purpose of background window calculations, valid pixels are defined as land 
pixels (as defined by the ancillary land-type data) and are subjected to rudimentary tests for warm 
pixels and clouds by screening for cold or reflective pixels. The warm pixel screening prevents 
pixels with a Channel 7 temperature warmer than 310 K (plus 25 * cos[solar zenith angle] during 
the day) from being included in the background statistics.  The cold pixels threshold is a Channel 
7 or 14 temperature less that 270 K.  The reflective pixel threshold is a visible brightness value 
less than 1 or an Albedo greater 0.25.  Visible brightness is defined as an integer of the square root 
of the channel 2 reflectivity multiplied by 255 (similar to a legacy calibration).  The albedo is 
defined as the channel 2 reflectivity divided by the cosine of the solar zenith angle.  Since the 
background window may become large, an offset – the lesser amount between 5 and the number 
of times the background window was expanded (Number_Passes_In_Background_Statistics in 
Table 3.6) divided by three – is applied to take window size into consideration. 
 
Several statistics are calculated within the background window once the window has expanded 
enough such that 20% of the pixels within the window are valid, cloud-free, land pixels.  These 
statistics include the mean, variance, and standard deviation of channel 7 (3.9 µm) brightness 
temperature, channel 14 (11.2 µm) brightness temperature, brightness temperature difference of 
channel 7 minus channel 14, and visible brightness value.  Additionally, the “histogram approach” 
is calculated on the channel 7 (3.9 µm) brightness temperature, channel 14 (11.2 µm) brightness 
temperature, brightness temperature difference of channel 7 minus channel 14.  The “histogram 
approach” refers to a technique where integer values of temperature (or brightness) is converted 
into histograms bins.  The bin with the highest frequency of channel 7 minus channel 14 
temperature difference, along with the two closest neighbors, are used to determine a mean 
temperature (or brightness value), variance, and standard deviation. The traditionally calculated 
channel 7 standard deviation is compared against the channel 7 “histogram approach” standard 
deviation and whichever technique found the lower standard deviation becomes then the technique 
used to define the mean channel 7 background temperature, mean channel 14 background 
temperature, and mean visible brightness value. 
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The background statistics calculate 26 different quantities for each pixel examined.  Table 3.6 lists 
those quantities and associated symbols for reference in ensuing sections. 
 

Table 3.6 Background Statistics Calculated 

Symbol Definition 
Temp4_Bkg_Mean The mean background Channel 7 (3.9 µm) 

brightness temperature (K) 
Temp11_Bkg_Mean The mean background Channel 14 (11.2 µm) 

brightness temperature (K) 
Vis_Mean_Bkg The mean background visible brightness value 

(8-bit). 
Temp4_Bkg_StdDev The standard deviation of the computed 

background Channel 7 (3.9 µm) brightness 
temperature 

Temp11_Bkg_StdDev The standard deviation of the computed 
background Channel 14 (11.2 µm) brightness 
temperature 

Vis_Bkg_Histogram_StdDev The standard deviation of the computed 
background visible brightness value (8-bit).  
(Used only for development debugging) 

Histogram_Bin_Largest_Count The mean background visible brightness value, 
determined using a histogram technique (8-bit). 

Number_Passes_In_Bkg_Statistics The number of window enlargements (loops) 
needed to determine background values. 

Sum_Of_Values_Comp_Bkg_Temp
4 

The sum of all cloud/fire-cleared Channel 7 (3.9 
µm) brightness temperature values in the 
background window. (K) 

Sum_Of_Values_Comp_Bkg_Temp
11 

The sum of all cloud/fire-cleared Channel 14 
(11.2 µm) brightness temperature values in the 
background window. (K) 

Idx_Cld_Bkg The number of cloud/fire-cleared input values 
used to compute the background statistics 

Bkg_Count_Idx The percent of the total number of background 
window values that were usable.  (Used only for 
development debugging) 

Temp4_Bkg_Histogram The mean background Channel 7 (3.9 µm) 
brightness temperature value determined from a 
Channel 7 minus Channel 14 (3.9 µm  minus 
11.2 µm) difference histogram approach. (K) 

Temp11_Bkg_Histogram The mean background Channel 14 (11.2 µm) 
brightness temperature value determined from a 
Channel 7 minus Channel 14 (3.9 µm  minus 
11.2 µm) difference histogram approach. (K) 
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Temp4_Bkg_Histogram_StdDev The standard deviation of the background 
Channel 7 (3.9 µm) brightness temperature value 
determined from a Channel 7 minus Channel 14 
(3.9 µm minus 11.2 µm) difference histogram 
approach. 

Temp11_Bkg_Histogram_StdDev The standard deviation of the background 
Channel 14 (11.2 µm) brightness temperature 
value determined from a Channel 7 minus 
Channel 14 (3.9 µm minus 11.2 µm) difference 
histogram approach. 

StdDev_4Mu_11Mu_Temp_Diff The standard deviation of the background 
Channel 7 minus Channel 14 (3.9 µm minus 11.2 
µm) brighntess temperature difference. 

Vis_Diff_Histogram The mean background visible brightness value 
(8-bit) determined from a Channel 7 minus 
Channel 14 (3.9 µm minus 11.2 µm) histogram 
approach 

Vis_Histogram_Variance The variance of the computed background 
visible brightness value (8-bit) determined from 
a Channel 7 minus Channel 14 (3.9 µm minus 
11.2 µm) difference histogram approach.  (Used 
only for development debugging) 

Vis_Histogram_StdDev The standard deviation of the computed 
background brightness value (8-bit) determined 
from a Channel 7 minus Channel 14 (3.9 µm 
minus 11.2 µm) difference histogram approach.  
(Used only for development debugging) 

Temp4_Bkg_Avg The scaled sum of Channel 7 (3.9 µm) brightness 
temperature for all pixels within the immediate 
vicinity of the pixel being considered. (K)  (Used 
only for development debugging) 

Temp4_StdDev The standard deviation of the Channel 7 (3.9 
µm) brightness temperature for all pixels within 
the immediate vicinity of the pixel being 
considered.  (Used only for development 
debugging) 

Temp11_Bkg_Avg The scaled sum of Channel 14 (11.2 µm) 
brightness temperature for all pixels within the 
immediate vicinity of the pixel being considered. 
(K)  (Used only for development debugging) 

Temp11_StdDev The standard deviation of the Channel 14 (11.2 
µm) brightness temperature for all pixels within 
the immediate vicinity of the pixel being 
considered.  (Used only for development 
debugging) 
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Rad_4Mu_11Mu_Avg_Diff This is “Reflb”.  The mean of the Channel 7 
minus Channel 14 (3.9 µm minus 11.2 µm) 
radiance difference (in Channel 7/3.9 µm space) 
for all pixels within the immediate vicinity of the 
pixel being considered. 

Rad_Diff_Sigma The standard deviation of the Channel 7 minus 
Channel 14 (3.9 µm minus 11.2 µm) radiance 
difference (in Channel 7/3.9 µm space) for all 
pixels within the immediate vicinity of the pixel 
being considered. 

 
If no background determination can be made at all, the mask code is set to 170 and the algorithm 
moves to the next pixel. 
 
The background statistics calculations provide two different approaches, “histogram” and 
“statistical,” to obtaining background temperature information.  The decision on which one to use 
is based on which of the two has the smaller standard deviation.  For daylit pixels, the Channel 2 
approach is always based on a histogram.  If the “statistical” method is chosen, the background 
visible brightness is the brightness from Channel 2 corresponding to 
Histogram_Bin_Largest_Count.  In the “histogram” cases the Channel 2 background is 
Vis_Diff_Histogram.  This value is known as Vis_Brightness_Value. 
 

3.4.2.6  Determine contextual thresholds 

Contextual thresholds are based on the means and standard deviations within the background 
window.  Offsets for window size, scaling factors, minimum thresholds and maximum thresholds 
also apply to certain thresholds.   There are thresholds computed for the 3.9 µm (Channel 7) and 
11.2 µm (Channel 14) brightness temperatures, 3.9 µm (Channel 7) minus 11.2 µm (Channel 14) 
brightness temperature, reflectivity product of the radiance difference between the Channel 7 and 
Channel 14 radiance (when the Channel 14 brightness temperature is converted into Channel 7 
radiance) and Channel 2 albedo products. 

 Std. Dev. (Tb3.9 – Tb11.2) test 
The above standard deviation test in the first equation above refers to the standard deviation of the 
Channel 7 minus Channel 14 brightness temperature within the background window that is then 
multiplied by 2 and but limited to a maximum value of 4.0. 

 Std. Dev. (Tb3.9) test 
The standard deviation test in the second equation is the standard deviation of the Channel 7 
brightness temperature within the background window that is multiplied by 2.5, then a constant is 
added which is the smaller value between either 5.0 or the number of times the background window 
was expanded (Number_Passes_In_Background_Statistics in Table 3.6) divided by three.  This 
value is set to 4.0 if it had been smaller than 4.0 or set to 10.0 if it had been larger than 10.0.   

 Std. Dev. (Reflb) test 
The standard deviation test above is the reflectivity standard deviation within the background 
window.  It is calculated as the 3.9 µm (Channel 7) minus 11.2 µm (Channel 14) radiance in 3.9 
µm (Channel 7) radiance space.  The value is scaled by multiplying by 2.0 and if the scaled value 
is smaller than 2.0 or larger than 10.0 it is defined at the appropriate floor or ceiling value. 
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 Std. Dev. (Reflb) max value test 
The standard deviation test above is a second, reflectivity standard deviation test.  The same 3.9 
µm (Channel 7) minus 11.2 µm (Channel 14) radiance in 3.9 µm (Channel 7) radiance space value 
is used, except difference scaling is applied.  The standard deviation value is multiplied by 2.5 and 
an offset of 0.5 multiplied by the larger value between 5 and the number of pixels in the 
background divided by 3 is added to the scaled standard deviation.  There is a ceiling of 10.0 and 
floor value of 2.5. 

 along scan-line radiance test 
There is an along scan reflectivity product difference test that is used to check for localized 
anomalous spikes relative to nearby pixels (±2 pixels, ±3 pixels) , but not the adjacent pixels. The 
tests compare the difference between the 3.9 µm (Channel 7) radiance minus 11.2 µm (Channel 
14) radiance in 3.9 µm (Channel 7) radiance space of for the pixel of interest against the same 
radiance difference term from neighboring pixels defined as the pixels ±2 elements away (not 
including the adjacent pixels).  If the radiance differences the pixels ±2 elements away is less than 
the previously defined Std. Dev. (Reflb) test value and the 3.9 µm (Channel 7) brightness 
temperature (for the pixel of interest) is less than 5 times the cosine of the solar zenith angle plus 
315 K (during the daytime or 315 K at night) (T3.9ReflThreshold as calculated in Section 3.4.2.3), then 
the along scan-line radiance test is false. 
 
If the pixel is daylit, the background Albedo and the difference between the pixel Albedo and 
background Albedo are calculated at this point, and later used in Section 3.4.2.8.  The background 
Albedo, ABkg, is calculated using the background visible brightness (Vis_Brightness_Value ) 
determined in Section 3.4.2.5: 

 ABkg = ((Vis_Brightness_Value/25.5)2) / ( COS[solar zenith angle] * 100.) 
The Albedo difference is simply the pixel Albedo minus the background Albedo. 
 

3.4.2.7  Apply thresholds to identify fire pixels 

The threshold tests outlined above are fundamental: sub-pixel fires will result in warmer 3.9 µm 
(Channel 7) brightness temperatures than observed at 11.2 µm (Channel 14), the 3.9 µm (Channel 
7) fire pixel temperature will also be warmer than the surrounding 3.9 µm (Channel 7) background 
temperature.  Various tests are necessary to make sure the variation in brightness temperature is 
not due to solar contamination, surface changes, or random noise.  There are some tests described 
as “scaled standard deviation tests” and are described as such because they are based on the 
standard deviation of values from within the background window, but are scaled in different ways 
depending on the size of the background window. 
 
The first test that identifies possible fire detections is applied to pixels that are either flagged as 
saturated or required more than 10 passes to build the background window.  There are two tests 
that if true will stop the algorithm from further processing the pixel and the algorithm skips ahead 
to the determination of pixel size (algorithm goes to the end of Section 3.4.2.11 using the procedure 
outlined in Section 3.4.2.10 to determine pixel size).  The tests must be false for the pixel to remain 
under consideration as a potential fire pixel: 

 (T3.9 – T11.2) <  Std. Dev. (Tb3.9 – Tb11.2) test 
 T3.9 – Tb3.9 <   Std. Dev. (Tb3.9) test 
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Refer to Table 3.4 for the definition of the terms and Section 3.4.2.6 for the description of the 
contextual threshold tests.  If those two tests are passed, fire size and pixel area are set to zero.  If 
the pixel is saturated, additionally the fire temperature is initialized to zero, otherwise it is 
initialized to -9.05. 
 
Further tests listed below are implemented that when true will exclude the pixel from being defined 
as a potential fire pixel.  

 Refl < Std. Dev. (Reflb) test AND T3.9 <320 K 
 T3.9 – T11.2 < 0 .OR.   T3.9 – Tb3.9 < 0 

If either of the two previous tests is true, the algorithm concludes that the pixel is a non-fire pixel 
and it retains its initial mask code of 100 or a cloud flag code if that had been previously set.  The 
pixel is not flagged for the purposes of determining why it was not characterized as a fire. 

 T3.9 – T11.2 < Std. Dev (Tb3.9 – Tb11.2 ) test 
                 AND 
    [Refl < Std. Dev. (Reflb) max value test OR pass along scan-line radiance test] 

If this test is true, the algorithm concludes that the pixel is a non-fire pixel and it retains its initial 
mask code of 100 or a cloud flag code if that had been previously set. The pixel is flagged with a 
“1” to indicate the reason why it was not characterized. This value is not recorded in any output 
for GOES-R. 

 T3.9 – Tb3.9 < Std. Dev (Tb3.9) test 
                 AND 
    [Refl < Std. Dev. (Reflb) max value test OR pass along scan-line radiance test] 

If this test is true, the algorithm concludes that the pixel is a non-fire pixel and it retains its initial 
mask code of 100 or a cloud flag code if that had been previously set. The pixel is flagged with a 
“2” to indicate the reason why it was not characterized. This value is not recorded in any output 
for GOES-R. 
 

3.4.2.8  Apply corrections and adjustments 

For all pixels that pass the thresholds tests outlined above, transmittance, emissivity, solar 
reflectivity and diffraction corrections are applied to the observed and background 3.9 µm 
(Channel 7) and 11.2 µm (Channel 14) brightness temperatures.  NCEP model total column 
precipitable water (TPW) values are used to correct for water vapor attenuation using a look-up 
table to assign radiance offsets for various TPW at different local zenith angles.  A 3.9 µm 
(Channel 7) and 11.2 (Channel 14) µm brightness temperature adjustment is estimated for semi-
transparent clouds/smoke directly over the fire pixel for minimal attenuation situations.  The offset 
is based on a heritage regression analysis.  If the Channel 2 derived surface albedo is too large, no 
offset is attempted and the fire pixel is flagged as cloudy. 
 
The technique used to correct temperature for atmospheric transmittance is to convert the channel 
temperature to radiance, using the normal Planck function for the given sensor, and then subtract 
the quantity of the channel radiance multiplied by the extinction due to TPW divided by the 
channel transmittance (as defined by the radiative transfer look-up table): 

radୡ୭୰୰, ൌ
൫rad െ ext ∗ rad୭ୱୣ୲,൯

trans
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The TPW Offset Lookup Table contents, which yield extλ and transλ,  are used to correct for water 
vapor attenuation. They are used as a lookup table without interpolation.  The six rows are: 

1) TPW in mm divided by 10 and rounded to the nearest integer, resulting in values from 1 to 
5. 

2) The columns of values contain radiance offsets due to absorption and transmissivity for the 
4 µm and 11 µm bands at 7 different satellite zenith angle bins.  They are in 10 degree bins, 
numbered 1 to 7, where the bin number is the satellite zenith angle divided by 10, rounded 
to the neared integer, and capped at no less than 1 and no greater than 7. 

3) 4 µm transmittance (transλ ) for the given TPW and Satellite Zenith Angle bins. 
4) 11 µm transmittance (transλ ) for the given TPW and Satellite Zenith Angle bins. 
5) 4 µm absorption offset (extλ) in radiance units for the given TPW and Satellite Zenith Angle 

bins. 
6) 11 µm absorption offset (extλ) in radiance units for the given TPW and Satellite Zenith 

Angle bins. 
The thirty-five columns result from 5 TPW bins and 7 satellite zenith angle bins.  The first seven 
values are the satellite zenith angle bins for the first TPW bin, and so on.  The table is loaded into 
a pixel array at the start of the algorithm, using the TPW and Satellite Zenith Angle as the two 
lookup terms. 
 
The radiances and brightness temperatures calculated from them are checked, if they are less than 
0 (due to an error or fill value), the Fire Mask Code is set to 180 and the algorithm proceeds to the 
next pixel. 
 
For daylight pixels, i.e. if Channel 2 is available, the solar zenith angle is between or equal to 0º 
and 85º (ie: the pixel is sunlit), a correction is applied for semi-transparent clouds/smoke over a 
pixel.  If the difference between the pixel’s albedo and the background albedo is more than 0.025 
and less than 0.07, the following corrections are applied: 

 T3.9 = T3.9 + 10*ADiff 
 T11.2 = T11.2 + 30*ADiff 

If the Albedo is great than 0.25 or the difference between the pixel and background albedos is 
greater than or equal to 0.25, the following corrections are applied: 

 T3.9 = T3.9 + 0.7 
 T11.2 = T11.2 + 2.1 

A flag indicating this condition is also set, and used in Section 3.4.2.9. 
 
The UW BF emissivity database is used to correct for surface emissivity in the 3.9 µm (Channel 
7) and 11.2 µm (Channel 14) bands.  The observed radiance, which has already been corrected for 
TPW attenuation, is adjusted by dividing by the emissivity to obtain a more accurate value for the 
actual emitting radiance of the background and the observed pixel: 
 

radୡ୭୰୰,
ᇱ ൌ

radୡ୭୰୰,
emiss

 

 
Any remaining difference between the background 3.9 µm (Channel 7) and 11.2 µm (Channel 14) 
brightness temperatures is assumed to be due to solar reflectivity. 
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The solar reflectivity correction is calculated by taking the difference between the 3.9 µm 
background radiance and the estimated 3.9 µm radiance calculated from the 11.2 µm radiance 
multiplied by the 3.9 µm emissivity.  This represents the solar component: 
 

radୱ୭୪ୟ୰ ൌ radୡ୭୰୰,ୠୟୡ୩୰୭୳୬ୢ,ସ
ᇱ െ emissସ ∗ radୡ୭୰୰,ୠୟୡ୩୰୭୳୬ୢ,ସ୰୭୫ଵଵ 

 
The term radcorr,background,4from11 is the 3.9  µm radiance calculated with the Planck function using 
the brightness temperature associated with the 11.2 µm radiance.  This background radiance 
correction assumes that the solar component accounts for that difference. 
radsolar is subtracted from the 3.9 µm radiance.  The resulting corrected radiance is divided by the 
3.9 µm emissivity. 
 

radୡ୭୰୰,ସ
ᇱᇱ ൌ

radୡ୭୰୰,ସ
ᇱ െ radୱ୭୪ୟ୰
emissସ

 

 
The brightness temperatures calculated from the corrected radiances are checked after these 
corrections have been applied, specifically T3.9c, T11.2c, Tb11,2, Tb4c, and Tb11.2c.  If they are less than 
or equal to zero 0, the Fire Mask Code is set to 180 and the algorithm proceeds to the next pixel. 
 
Next, corrections are made for diffraction.  From the channel radiance, a constant multiplied by 
the channel background radiance is subtracted, this difference is then divided by a second constant.  
The first constant is 0.15 for Channel 7 and 0.30 for Channel 14; the second constant is 0.85 for 
Channel 7 and 0.70 for Channel 14: 
 

radୢ୧,ସ ൌ
ሺradୡ୭୰୰,ସ

ᇱᇱ െ 0.15 ∗ radୡ୭୰୰,ୠୟୡ୩୰୭୳୬ୢ,ସ୰୭୫ଵଵሻ

0.85
 

 

radୢ୧,ଵଵ ൌ
ሺradୡ୭୰୰,ଵଵ െ 0.30 ∗ radୡ୭୰୰,ୠୟୡ୩୰୭୳୬ୢ,ଵଵሻ

0.70
 

 
The diffraction corrected radiances are then converted back to Channel temperatures using the 
Planck function.  The “corrected” and “adjusted” terminology is synonymous throughout the 
documentation.  The cloud screening and preliminary fire detection tests use observed temperature 
values, but the fire characterization, such as the fire size and temperature calculations, and 
subsequent tests that occur after the corrections are made utilize the fully corrected Channel 7 and 
14 radiances and temperatures. 
 
 

 

 

3.4.2.9  Post corrections tests 

Once the temperature corrections have been applied there are a few additional tests to possibly 
identify fire pixels.  If the tests result the pixel being flagged with 3, 4, 5, or 10, the pixel is not 
immediately flagged as a fire pixel and the Dozier steps in Section 3.4.2.10 are skipped; the pixel 
will be subjected to the “last chance” fire tests described in Section 3.4.2.11: 
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 T11.2c < 285 K OR T3.9c < 285 K + (COS[solar zenith angle] * 15 ) (solar component 
omitted at night) 
 

If the first test is true, the pixel is flagged with a value of “3” that will be used in Part II for fire 
confidence category determination. 

 T11.2c – Tbc < 0.25 K 
 If (Albedo > 0.15 OR Cloudy (Section 3.4.2.3)) AND T3.9c – Tbc > 10 K 

 Record “10” 
 ELSE 

 Record “4” 
 
 
If the above test is true a flag value of “10” or “4” is recorded; it is “10” if certain cloud tests are 
satisfied, otherwise it is assigned a value of “4”.  The cloud tests are that the 3.9 µm corrected 
temperature must be at least difference 10 K warmer than the background window temperature 
plus either the albedo is greater than 0.15 or a logic cloud test is true (defined in Section 3.4.2.3).   
 

 T3.9c – Tbc < 2.0 K  
If the above third bullet point test is true, a flag value of “5” is recorded. The flags used for fire 
category classification are described in further detail in Section 3.4.2.15. 
 
Finally, in Section 3.4.2.8 a flag was set indicating that if Channel 2 is available, the solar zenith 
angle is between or equal to 0º and 85º (ie: the pixel is sunlit), and if Albedo is greater than or 
equal to 0.25 or if Albedo minus the background albedo is greater than 0.07, the pixel is given a 
flag value of “8”. The background albedo is calculated from the visible brightness value calculated 
in Section 3.4.2.5.  That value is a count, to convert it to albedo; 

Albedobkg = ((Vis_Count/25.5)2)/(cosine(Solar Zenith Angle) * 100) 
Pixels flagged with “8” continue on to Section 3.4.2.10. 
 

3.4.2.10 Sub-pixel characterization: Dozier 

Both the current MODIS and GOES fire algorithms utilize the 4 µm and 11 µm infrared bands in 
dynamic, multispectral thresholding contextual algorithms to locate and characterize sub-pixel hot 
spots.  Once a fire is identified, a modified Dozier method (Dozier, 1981) is used to determine 
instantaneous estimates of sub-pixel fire size and temperature.  Fire radiative power (FRP) can be 
derived from the Dozier fire size and temperature estimates or directly from the observed middle 
infrared (MIR) radiances (Wooster et al., 2003; Roberts et al., 2005).  The Dozier technique 
remains the only way to simultaneously solve for fire size and temperature, a technique does not 
exist to simultaneously derive accurate fire size and temperature solutions from FRP alone.  These 
two methods used to characterize sub-pixel fires are outlined in the following sections. 
 
An explanation of the terms for a modified version of the Dozier equations is provided in Table 
3.7 with the acronyms and terms described in Table 3.8.  Term A is the ABI total adjusted radiance 
in the 3.9 µm and 11.2 µm bands, respectively.  Term B represents the proportion of the total 
radiance due to the sub-pixel fire at temperature Tt.  Term C is the proportion of the total radiance 
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due to the background non-fire portion of the pixel at Tb (here Tb is equivalent to Tbc as defined 
in Table 3.4). Notice that the adjusted radiance in Term A takes into account solar reflectance 
contribution to the 3.9 µm total observed radiance as well as atmospheric and emissivity 
corrections.  Instantaneous estimates of sub-pixel fire size and temperature are determined by 
solving the modified Dozier equations using numerical methods.  The bisection technique is used 
to hone in on the solution that is used as an initial condition for a Newton’s Method technique that 
converges on the final fire size and temperature solution (Prins and Menzel, 1992; 1994).  The 
bisection technique begins by defining bounds on fire proportions of solutions of 1.0 and 0.000001; 
the system of equations can be solved for fire temperature in the Channel 7 and in the Channel 14 
equations. A possible fire proportion solution is tested against the upper and lower bounds; a fire 
temperature solution using the Channel 7 equation and a fire temperature solution is found using 
the Channel 14 equations.  Next, and intermediary fire proportion is defined as below. 

 
 
 

 (3.1) 
 

 
The difference between the Channel 7 fire temperature solution and the Channel 14 fire 
temperature solution needs to be calculated for the intermediary solution.  The sign of the fire 
temperature solution difference of the intermediary fire temperature solution should match the sign 
of the fire temperature solution difference of either the upper or lower bound fire temperature 
solutions difference; the intermediary solution replaces the bound that has the matching sign.  The 
bisection technique continues for 15 iterations.  The final intermediary bisection method fire 
proportion and fire temperature solutions are used as the initial condition in the Newton Method 
technique to find a more precise solution.  The Newton Method uses intermediary fire proportion 
and fire temperature solutions to solve for the equations shown in Table 3.7.  Once the Newton 
solutions resolve a value of B + C is within 10-20 (radiance units) of A for both Channels 7 and 14, 
then the solution is recorded and the loop is exited; if a solution cannot be found, the pixel may 
still be a fire and a negative value is recorded for fire temperature act as a flag indicating it did not 
pass the tests necessary to be categorized as a “processed” fire category detection.  
 

Table 3.7 Terms of the modified Dozier equations 

Modified Dozier equations 

A      =      B     +     C     

A   B C 

L3.9(T3.9)  p L3.9(Tt) (1-p)L3.9(Tb) 

L11.2(T11.2)  p L11.2(Tt) (1-p)L11.2(Tb) 
 

Table 3.8 Definition of terms in modified Dozier equations 

Modified Dozier equation terms 
Term Definition 

10 2
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Lx(Tx) 
Radiance calculated by integrating the product of the Planck function and the response function 
for each spectral band x 

L3.9 3.9 μm (Channel 7) adjusted radiance 
L11.2 11.2 μm (Channel 14) adjusted radiance 

p Proportion of pixel on fire 
1-p Proportion of pixel not on fire 
T3.9 3.9 μm (Channel 7) adjusted brightness temperature 
T11.2 11.2 μm (Channel 14) adjusted brightness temperature 
Tb Background/non-fire brightness temperature 
Tt Average instantaneous target temperature of sub-pixel fire 

 
The heat of combustion specifies the amount of chemical energy liberated through the process of 
combustion.  Burning a known mass of a known substance will release a known amount of heat as 
defined by the heat of combustion, and this amount of heat release is correlated to the total 
measureable fire radiative energy (FRE).  FRE is the time integral of fire radiative power (FRP).  
The typical unit of FRE is Joules and FRP is given in Watts (J/s) or more commonly Megawatts 
(1 MW = 106 W).  FRP provides another way to characterize sub-pixel fires.  Furthermore, there 
is a correlation between the total FRE and PM 2.5 concentrations and other emissions.   
 
Fire radiative energy (FRE) and FRP are by definition related to the temperature and size of a fire 
and rely on the same 3.9 µm (Channel 7) and 11.2 µm (Channel 14) data as the Dozier method.  
Equation 3.2 provides the definition of FRPDEF and the terms of the equation are defined in Table 
3.9. 
 




n

k
kk

1

4
pixelDEF TpAFRP     (3.2) 

 

Table 3.9 Legend for terms used in FRPDEF equation 

Terms used in FRPDEF equation 
Term Definition 
Apixel Area of pixel 
ε Emissivity of the fire (typically assumed to be 1) 
σ Stefan – Boltzmann constant [5.67 x 10-8 Wm-2K4] 

pk 
Instantaneous sub-component area on fire within the pixel where the number of sub-
components ranges from 1 to n 

Tk 
Instantaneous temperature of the sub-component area on fire within the pixel where the 
number of sub-components ranges from 1 to n 

 
FRPDEF can be simplified and estimated by utilizing the instantaneous estimates of total fire size 
and average temperature calculated from the Dozier equations.   FRP can also be approximated 
from the middle infrared radiance (MIR) method.  The FRPMIR approximation relies on Planck’s 
Radiation Law and the Stepfan-Bolzmann Law.  Planck’s Law specifies that component of spectral 
radiance emitted due to the fire can be approximated by Equation 3.3  
 

  4
MIRf, T a εTλ,B εL      (3.3) 
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However, spectral radiance can be approximated by an aTx relationship for only a limited range of 
temperatures and wavelengths before the a and x approximations breakdown.  For wavelengths 
near 4 μm and for temperatures in the 600 K – 1400 K range, the constant a takes the value of 3.0 
x 10-9 [Wm-2sr-1μm-1K-4] (note that this value is instrument specific and that it utilizes radiances in 
wavelength units rather than the more common wavenumber units) and the x term is to the power 
of 4.   This approximation allows the MIR spectral radiance term, Lf,MIR to take the same form as 
the Stepfan-Boltzmann Law (E=εσT4) and allows for a simplification resulting in the FRPMIR, 
Equation 3.4. LMIR is the radiance observed at 3.9 μm, LB,MIR is the background radiance at 3.9 μm, 
and a is the same a constant from Equation 3.2.  

 LLa MIRB,MIR
pixel

MIR
A

FRP 










       (3.4) 

 
This approximation is only valid for 600 K < T < 1400 K and fires are assumed to emit as gray-
bodies.  Since FRPMIR is calculated without solving for the fire temperature, it is computationally 
less intensive.  The principle difference between FRPDEF and FRPMIR is that without solving for 
the fire temperature the errors associated with the temperature dependency of FRPMIR are 
indeterminate.  Both FRPDEF and the Dozier technique require accurate background estimates.  
FRPMIR requires only the 3.9 μm background measurements which can be computationally 
advantageous in that only one Channel is required, however using a multi-Channel approach as 
the Dozier method uses may provide a better background estimate due to its utilization of a longer 
wavelength IR window Channel that is that is less sensitive to sub-pixel fires, but multi-Channel 
methods have the disadvantage of added complexity.  In the range of temperatures and sizes where 
the Dozier method is known to perform well, the two methods agree well. 
 
There are a number of assumptions made in deriving the Dozier estimates and FRP.  First of all 
the output from the equations is no better than the input ABI data.  The technique assumes well-
calibrated ABI Channels 2, 7, 14, and 15 that meet current specifications for NedT, co-registration, 
diffraction, earth location, saturation, etc.  It also assumes that sub-pixel detector saturations are 
flagged and available for application in near real time.  If this information is not available, sub-
pixel characterization is suspect for both saturated and non-saturated fire pixels.   The accuracy of 
the NCEP TPW is expected to be equal to or better than current 6-hourly forecasts.  The algorithm 
requires access to a high quality dynamic surface emissivity database.  The algorithm assumes that 
ABI observed radiances are determined by the fire and non-fire portion of the pixel and are only 
affected by and adjusted for surface emissivity, water vapor attenuation, semi-transparent 
clouds/smoke, diffraction, and solar reflectivity (3.9 µm band – Channel 7 – only).  Each of the 
above “attenuation” (except clouds/smoke) properties are assumed the same for the fire pixel and 
background conditions 
 
Once the 3.9 µm (Channel 7) observed background radiance is corrected for emissivity, water 
vapor attenuation, and semi-transparent clouds, the remaining difference with the 11.2 µm 
(Channel 14) band background radiance is assumed to be due to solar reflectivity.  The algorithm 
assumes that the sub-pixel fire acts as a whole and the results reflect instantaneous estimates of 
sub-pixel average fire size and temperature. 
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All pixels that have not been eliminated via all the previously described test and remain as potential 
fire pixel are run through the Dozier method to determine instantaneous estimates of sub-pixel fire 
size and temperature for all non-saturated, non-cloudy potential fire pixels using the Dozier 
method (1981).   
 
Before running the Dozier method, the pixels where sun glint may be possible are flagged with a 
value of “8” which will be used in Part II for fire confidence category determination.  The 
algorithm will run the “last chance” fire tests if certain conditions within the Dozier calculations 
are met.  One specific error that triggers the “last chance” fire tests is if one of the intermediary 
fire solutions fails in the bisection technique portion of the Dozier technique because there is no 
sign difference between the intermediary solution and the upper and lower solution bounds.  If 
during the Newton Method portion of the code finds a fire temperature solution less than zero, the 
Newton Method is stopped and the pixel is subjected to the “last chance” test.  Another condition 
that will trigger the “last chance” fire tests is if the final fire temperature solution is less than 400 
K and the pixel is in a potential glint region (i.e. the flag code used by Part II for fire confidence 
category had been set to a value of “8” before the Dozier method began; pixel albedo is greater 
than 0.25, or the difference between the pixel albedo and the background albedo is greater than 
0.070).   If the flag code used by Part II for fire confidence category classification had been set to 
“8” and the fire temperature solution is greater than 400 K, then the flag code for the Part II fire 
confidence category determination is set to a value of “9”.  If the pixel is not in a potential glint 
region and the fire temperature solution is less than 400 K, then a flag code of “6” is assigned. 
 
If the prior tests have been passed, the area of the pixel in square kilometers is calculated.  In 
principle the area of the pixel is calculated by finding the lengths of the sides of the pixel using the 
great circle equation and treating it as a rectangle by finding the average length of the vertical and 
horizontal sides.  However, the great circle distance algorithm used by the framework, which is 
the arccosine formulation of the great circle distance equation and is used by the fires algorithm, 
can cause an incorrect distance to be determined for small distances due to the precision of the 
central angle (which is stored in a single precision variable).    To counteract this, the code makes 
the box 4x4 by adjusting the corners +/-2 from the given pixel line and element.  After the great 
circle distances are calculated, they are divided by 4 prior to averaging the two sets of legs to find 
the area.  The area is returned in square kilometers.  To create the box the line and element of the 
pixel is used as the center of a 4x4 box, the corners calculated by adding and subtracting 2.  Those 
latitudes and longitudes are then used with the great circle equation to calculate distances in meters, 
which are then averaged between the top and bottom and the left and right to create a rectangle 
that approximates the 4x4 box, the sides of which are then divided by 4 prior to calculating the 
area. 
 

3.4.2.11 Last chance fire tests 

The subset of the potential fire pixels that were eliminated by one of several tests described in 
previous sections have a “last chance” to become a fire pixel.  The pixels that reach these 
calculations either did not meet the criteria necessary for them be subjected to the fire size and 
temperature calculation test, or during those tests these pixels failed to produce a valid fire 
temperature solution.   If the following “last chance” test is true, the pixel is considered a possible 
fire pixel and is assigned a subpixel size of zero.  If the pixel passes this test but the fire temperature 
is between the minimum allowable fire temperature (400 K) and the hottest surface temperature 
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(350 K) it may be a smoldering fire and the fire temperature is negated and size set to zero.  If the 
fire temperature does not fall in that range it is set to -9.05. 

 
 T3.9  - Tb3.9 ≥ Std. Dev. (Tb3.9) test AND T11.2  - Tb11.2 ≥  -20 K  
                                  OR 
     [ Refl – Reflb ≥ Std. Dev. (Reflb) max value test  
       AND 
     pass along scan-line radiance test] 
 If above test is TRUE: 

Set subpixel fire size to zero. 
If 350 K < fire temperature <= 400 K, multiply fire temperature by -1, else set fire 
temperature to -9.05. 

 
The terms were defined in Table 3.4 and the contextual tests were described in Section 3.4.2.6. 
 
After the “last chance” fire tests, the pixel area is tested to as to whether it is greater than 4 km2.  
This test is also applied to possible fire pixels that did not go through the “last chance” tests, having 
jumped here from Section 3.4.2.4.  If pixels have jumped here from Section 3.4.2.4, their 
associated pixel area is still the initialization value, -9.  If the pixel area is less than 4 km2, it is 
recalculated using the procedure outlined in 3.4.2.10 and tested to see if it is less than 0.  If it is 
less than zero, the fire mask code is set to 188 and the algorithm cycles to the next pixel.  If it is 
greater than or equal to zero, the algorithm proceeds.  This allows the algorithm to assign pixel 
area to all fire pixels proceeding to the end of Part I. 
 

3.4.2.12 Sub-pixel characterization: FRP 

The algorithm computes fire radiative power (FRP) using Equation 3.4 for all non-saturated, non-
cloudy, non-low possibility potential fire pixels that have a Number_Passes_Bkg_Statistics (Table 
3.6) of 10 or fewer.  Put another way, if the fire has Fire Mask codes 11, 12, or 15, it has no 
reported FRP, and if the Number_Passes_Bkg_Statistics is greater than 10, it has no reported FRP. 
 
For fire pixels with no FRP calculated, FRP is set equal to -9.  FRP is initialized to -99, which 
differentiates non-fire pixels and fire pixels without an FRP. 
 

3.4.2.13 End part I 

If the a potential fire pixels passes the tests described in the preceding sections, it is assigned an 
unique incremental identification number and passed along with several ancillary values are passed 
along to Part II for further processing.  The output from Part I of the algorithm includes an 
intermediate listing of all possible fire pixels and associated metadata.  Part I also produces 
ancillary overview information.  The metadata mask information (opaque cloud, block-out zones, 
etc.) is stored and revised in Part II of the algorithm. The list of all values transported between Part 
I and Part II is listed below: 

 latitude of possible fire pixel  
 longitude of possible fire pixel 
 image line coordinate 



 

 37

 image element coordinate 
 fire count identifier number  
 3.9 µm emissivity value 
 11.2 µm emissivity value 
 sum of all values that were used to compute 3.9 µm background brightness temperature 

[K] 
 sum of all values that were used to compute 11.2 µm background brightness temperature 

[K] 
 number of values that were used to compute background statistics 
 3.9 µm background brightness temperature [K] 
 11.2 µm background brightness temperature [K] 
 standard deviation of 3.9 µm background brightness temperature 
 standard deviation of 11.2 µm background brightness temperature 
 3.9 µm observed brightness temperature [K] 
 11.2 µm observed brightness temperature [K] 
 minimum acceptable 3.9 minus 11.2 µm brightness temperature difference [K] 
 minimum acceptable subpixel estimate of average fire target temperature [K] 
 adjusted background brightness temperature [K] 
 adjusted 3.9 µm observed brightness temperature [K] 
 adjusted 11.2 µm observed brightness temperature [K] 
 subpixel estimate of average fire target temperature [K] 
 subpixel estimate of proportion of pixel on fire 
 subpixel estimate of fire area [km2] 
 Fire Radiative Power [kW]  
 number of background window loops/passes needed to determine background statistics 
 AVHRR Global Land Cover Characteristics land cover/ecosystem value 
 flag indicating reason for not processing sub-pixel characteristics 
 solar zenith angle  
 observed visible brightness value 
 mean background visible brightness value 
 mean background visible brightness value determined using histogram approach 
 albedo for observed brightness value, adjusted for solar zenith angle conditions 
 background albedo value, adjusted for solar zenith angle conditions 
 Julian date 
 time [UTC: HHMMSS]  
 total size of the current pixel [km2] 
 local zenith angle [degrees] 
 solar zenith angle [degrees] 
 relative azimuth angle [degrees] 
 mean background 3.9 µm brightness temperature determined by 3.9 minus 11.2 �m 

histogram approach [K] 
 mean background 11.2 µm brightness temperature determined by 3.9 minus 11.2 �m 

histogram approach [K] 
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 standard deviation of 3.9 µm background brightness temperature determined by 3.9 minus 
11.2 µm histogram approach 

 standard deviation of 11.2 µm background brightness temperature determined by 3.9 minus 
11.2 µm histogram approach 

 standard deviation of 3.9 µm minus 11.2 µm brightness temperatures used to compute 
mean background temperatures 

 observed visible brightness value 
 mean background visible brightness value 
 standard deviation of computed background visible brightness value 
 mean background visible brightness value determined by 3.9 µm minus 11.2 µm histogram 

approach 
 final background visible brightness value 
 3.9 µm minus 11.2 µm radiance difference (in 3.9 µm space) for the pixel being evaluated 
 mean of the 3.9 µm minus 11.2 µm radiance difference (in 3.9 µm space) for all pixels 

within the immediate vicinity of the pixel being evaluated 
 standard deviation of the 3.9 µm minus 11.2 µm radiance difference (in 3.9 µm space) for 

all pixels withing the immediate vicinity of the pixel being evaluated 
 difference between the value of rdd for the pixel being evaluated (location i) and the pixel 

at location i-2  
 difference between the value of rdd for the pixel being evaluated (location i) and the pixel 

at location i+2  
 indicate if the 3.9 µm minus 11.2 µm radiance difference (in 3.9 µm space) for the pixel 

being evaluated is significantly greater than values at locations i-2 and i+2 along the same 
scan line. 

 

3.4.2.14 Start Part II: Threshold test 

Once the list of potential fires is obtained, the algorithm performs additional tests to eliminate false 
alarms. 
 
If any of the following tests are true, the pixel is eliminated as a fire pixel. 
 

 T3.9 – Tb3.9 <   2.0  
                    AND 

                       [Refl – Reflb < Std. Dev. (Reflb) Part II test 
                    OR  
                      (pass along scan-line radiance test] 

 T3.9 < 290 K + (cos (solar zenith angle) * 20)  (solar component omitted at night) 
        AND 

            T3.9 - Tb3.9 < 10 
                    AND 
            T3.9   - T11.2    <  25 K 
                    AND 
            [Refl – Reflb < Std. Dev. (Reflb) Part II test OR pass along scan-line radiance 
              test] 
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 T3.9  < 290 K + (cos (solar zenith angle) * 20)  (solar componenet omitted at 
night) 
       AND 

                       Tb3.9 < 280 K + (cos (solar zenith angle) * 20)  (solar componenet omitted at 
                        night) 
                              AND 
                       Number of passes through background window loop ≥ 10 
                              AND 
                      [Refl – Reflb <  Std. Dev. (Reflb) Part II test OR pass along scan-line radiance 
                         test] 
 
The above mentioned Std. Dev (Reflb) Part II test is similar to the standard deviation test 
previously described in Part I, but not scaled in the same way.  The standard deviation of the 3.9 
µm (Channel 7) minus 11.2 µm (Channel 14) radiance in 3.9 µm (Channel 7) radiance space value 
is within the background window.  The standard deviation value is multiplied by 2.5 and if less 
than 2.5 the minimum value of 2.5 is assigned.  The along scan-line radiance test is that same as 
the Part I test described in Section 3.4.2.4. 
 
There is also an opportunity to further screen areas of sun glint, although the thresholds remain the 
same as in Part I for this version of the ABI WF_ABBA.  The algorithm also reevaluates possible 
fire pixels along the edge of cloud/fog. The test is as follows: 

 (Albedo > 0.25 OR Albedo – mean background window Albedo ≥ 0.10) 
               AND 

                     T3.9 < 292.5 K + (cos (solar zenith angle) * 20) (solar componenet omitted at night) 
                          AND 
                    flag indicating reason for not processing sub-pixel characteristics from Part I = 
                      “9” or “10” 
If these tests are passed, the flag indicating reason for not processing sub-pixel characteristics is 
set to “11”.  Processing for the pixel continues.  The albedo value is that same Channel 2 based 
value used in Part I, and the flag values passed from Part I to Part II were described in Section 
3.4.2.13. 
 
 

3.4.2.15 Determine fire category 

The fire categories (mask codes 10-15 and 30-35) are assigned based on information gathered in 
Part I for each possible fire pixel and the results of application of Part II threshold tests.  
Assignments of possible categories (13-15) are based on comparison of the observed Channel 7 
(3.9 µm) and Channel 14 (11.2) µm values with the background.  The fire categories are as follows: 
 

 10 or 30: Processed for sub-pixel instantaneous estimates of fire size and 
temperature  

 11 or 31: Saturated fire pixel  
 12 or 32: Partially Cloudy/Smoke Fire Pixel 

Possible Fire Pixels 
 13 or 33:  High Probability 
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 14 or 34:  Medium Probability (watch over time)   
 15 or 35:  Low Probability (watch over time) 

 
Codes 10-15 are fires that have not passed the temporal screen, codes 30-35 are fires that have.  
The “flags” are not the same as mask codes but instead are tracking flags from tests described in 
this section.  The test to define the fire confidence category 10: processed for sub-pixel 
instantaneous estimates of fire size and temperature pixel is that the fire temperature solution 
reaches Part II of the algorithm with a value greater than 400 K.  Similarly, the test to define the 
fire confidence category 11: saturated fire pixel is that the fire temperature solution reaches Part II 
of the algorithm with a value equal to 0 K (note that when a pixel is flagged as saturated in Part I 
an estimated temperature solution is not calculated whereas a fire temperature solution for all non-
saturated fire categories is attempted and always results in a non-zero temperature solution as a 
way to differentiate it from the saturated fire category).  The partially cloudy/smoke fire pixel 
category number 12 is defined as any potential fire pixel with a flag value of “9” or “10”; the 
conditions that triggered these flag values were described in Section 3.4.2.8 and Section 3.4.2.9. 
The high probability fire category number 13 is defined as a potential fire pixel that has a flag 
value between 30 and 40 (which was a result of the high confidence flag tests described later in 
this section), plus the fire temperature solution must be below zero (which was designed as a flag 
indicating a failed attempt at finding a valid fire temperature solution).  Similarly, the medium 
probability fire category number 14 is defined as a potential fire pixel that has a flag value between 
20 and 30 (which was a result of the medium confidence flag tests described later in this section), 
plus the fire temperature solution must also be below zero.  Lastly, the low probability fire category 
number 15 is defined as a potential fire pixel (although for many applications end-users do not 
consider this category to be a valid fire detection) that has a flag value of “11” (or less than 9 
(which is a result of the flag value not meeting either the condition for the high or medium 
confidence tests described later in this section), plus the fire temperature solution must be below 
zero. 
 
There are several tests necessary before the fire confidence category is determined.  Many of these 
tests take place in Part I of the fire detection algorithm and corresponding notations appear within 
the text is the subsections of Section 3.4.2.  Part I can pass a flag value of “3”, “4”, “5”, “6”, “7”, 
“8”, “9”, or “10” into Part II, and additional flag values can be assigned within Part II to help 
define the fire category.  For example, flag value “11” is reassigned in Part II for a pixel that had 
been given a flag value of greater than or equal to “9” in Part 1 and meets the following conditions: 

 COS( solar view angle) *10 + 5 ) – (Tb3.9 – Tb11.2 ) <   1.5 
                    AND 

                     T3.9 – Tb3.9  ≤ 4.0 K 
The algorithm will reassign the flag value by adding a value in the 30 for high possibility fire 
pixels or 20 for medium possibility fire pixels if pixels with flag values of “3”, “4”, “6”, or “8” 
meet the following conditions: 

 T3.9 – Tb3.9  > first high or medium confidence temperature threshold 
                   AND 
            Tb3.9 – Tb11.2 > second high or medium confidence temperature threshold 
                    AND 

                        [Refl – Reflb ≥ Std. Dev. (Reflb) Part II test OR pass along scan-line radiance 
                          test] 
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The above mentioned temperature thresholds are defined by some complex thresholds.  For the 
first temperature threshold, the larger value between 7 K (for high confidence threshold) or 5 K 
(for medium confidence threshold) and a scaled factor of the background temperature standard 
deviation is used.  To calculate the scaled factor of the background temperature standard deviation, 
first determine the window size offset factor defined as the minimum value between 5 and the 
number of passes used to create the background window divided by 3.  This window size factor is 
then added to 5 (for high confidence) or 3 (for medium confidence) plus 2 times the standard 
deviation of the 3.9 µm (Channel 7) background temperature.  The second temperature threshold 
is determined in a similar manner. The larger value between 7 K (for high confidence threshold) 
or 5 K (for medium confidence threshold) and a scaled factor of the background temperature 
standard deviation is used.  To calculate the scaled factor of the background temperature standard 
deviation, first use the same window size offset factor as previously defined.  The window size 
factor is then added to 5 (for high confidence) or 3 (for medium confidence) plus the 3.9 µm 
(Channel 7) minus 11.2 µm (Channel 14) temperature difference plus 2 times the standard 
deviation of the 3.9 µm (Channel 7) minus 11.2 µm (Channel 14) temperature difference within 
the background window. 
 
If the fire category number has been found to be 11 (saturated), 12 (cloudy), or 15 (low possibility), 
the FRP is set to -9000. 
 

3.4.2.16 Temporal filtering 

The output from Part II includes unfiltered as well as temporally filtered fires.  The algorithm 
utilizes the high temporal resolution of GOES-R ABI fire products to create a more conservative 
fire product for users who want to minimize false alarms.  For temporally filtered fires, current fire 
pixels are against a mask containing the time in seconds since January 1, 2001 corresponding to 
the last fire detected at that fixed grid ABI location.  If a previous fire pixel was detected within 
the past 12 hours and within 1 line and element of the image coordinate of a fire pixel, the fire 
pixel is given a mask code indicating that it is a temporally filtered fire.  Characteristics associated 
with fires are always those calculated in the most recent run of the code. 
 

3.4.2.17 Fire Output 

The fire algorithm output is described in detail in Section 3.4.3. 
 

3.4.2.18 End Part II 

After the output is written, the files are closed and the fire detection code is completed. 
 

3.4.3 Algorithm Output  

The ABI fire detection and characterization algorithm provides fire properties of subpixel fire size, 
subpixel fire temperature, and subpixel fire radiative power for fires classified as processed.  
Additionally, a per-pixel mask of codes, Table 3.11, indicates the processing region and 
information on decisions made by the algorithm about each pixel, as described in prior sections.  
Quality assurance flags, derived from the per-pixel mask, are also provided and are described in 
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Table 3.12.  Additionally, metadata output is provided.  A summary of the output data sets is 
provided in Table 3.10.  Some values are slightly modified prior to exit, as described in Table 3.10. 
 

Table 3.10 Summary of ABI fire code output data sets 

ABI fire code output 
Name Type Description Dimension 

Fire mask codes Output 
Codes indicating final disposition of pixels 
(including fire flags if so determined) 

grid (xsize, ysize) 

Subpixel fire size Output 

Subpixel fire size for processed fires (codes 
10 and 30) (km2) 
This is set to -9 if the subpixel fire 
temperature is less than 400 K at the end of 
the algorithm. 

grid (xsize, ysize) 

Subpixel fire 
temperature 

Output 

Subpixel fire temperature for processed fires 
(codes 10 and 30) (K) 
This is set to -9 if the subpixel fire 
temperature is less than 400 K at the end of 
the algorithm. 

grid (xsize, ysize) 

Subpixel fire radiative 
power 

Output 
Subpixel fire radiative power for processed 
fires (codes 10, 13, 14, 30, 33, and 34) 
(MW) 

grid (xsize, ysize) 

Previous fire mask Output 
ABI full disk mask of seconds since 1 
January 2001 when a fire was last detected 
in that fixed grid pixel. 

ABI full disk grid 

Quality Assurance 
Flags 

Output 
QA flags where 0 indicates a fire and non-
zero indicates non-fire pixels (see Table 
3.12) 

grid (xsize, ysize) 

Metadata 
Output 

metadata 

a. Number of fire categories 
b. Definition of each fire category 
c. Percent of pixels for each fire category 
d. Number of QA flag values 
e. Definition of each QA flag value 
f. Percent of retrievals with each QA flag 
value 
h. Total number of fires 

27 values, 12 
strings 

  
 
Table 3.11 lists the fire mask codes.  Entries marked “Reserved” are legacy code values not 
explicitly applicable to GOES-R ABI at this time. 
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Table 3.11 GOES-R ABI WF_ABBA fire mask codes 

GOES-R ABI WF_ABBA fire mask codes 
Mask Codes Definition 

-99 Initialization value, should never appear in outputs 
0 Non-processed region of input/output image 

10 Processed fire pixel 
11 Saturated fire pixel 
12 Cloud contaminated fire pixel 
13 High probability fire pixel 
14 Medium probability fire pixel 
15 Low probability fire pixel 
20 Reserved 
21 Reserved 
22 Reserved 
23 Reserved 
24 Reserved 
25 Reserved 
30 Temporally Filtered Processed fire pixel 
31 Temporally Filtered Saturated fire pixel 
32 Temporally Filtered Cloud contaminated fire pixel 
33 Temporally Filtered High probability fire pixel 
34 Temporally Filtered Medium probability fire pixel 
35 Temporally Filtered Low probability fire pixel 
40 Space pixel 
50 Local zenith angle block-out zone, greater than threshold of 80° 

60 
Reflectance (glint) angle or solar zenith angle block-out zone, within respective 
thresholds, 10° and 10° respectively 

100 Processed region of image 
120 Bad input data: missing  data, 3.9 µm ( Channel 7) 
121 Bad input data: missing  data, 11.2 µm ( Channel 14) 
123 Bad input data: saturation, 3.9 µm ( Channel 7) 
124 Bad input data: saturation, 11.2 µm ( Channel 14) 

125 
Invalid reflectivity product input (value <0).  Can be indicative of localized spikes in 
the reflectivity product/bad data 

126 Unusable input data: 3.9 µm ( Channel 7) less than minimum threshold (200 K) 
127 Unusable input data: 11.2 µm ( Channel 14) less than minimum threshold (200 K) 
130 Reserved 
150 Invalid ecosystem type 
151 Sea water 
152 Coastline Fringe 
153 Inland Water and other Land/water mix 
155 Reserved 
160 Invalid emissivity value 
170 No background value could be computed 
180 Error in converting between temperature and radiance 

182 Error in converting adjusted temperatures to radiance 

185 
Values used for bisection technique to hone in on solutions for Dozier technique are 
invalid.  

186 Invalid radiances computed for Newton’s method for solving Dozier equations 
187 Errors in Newton’s method processing 
188 Error in computing pixel area for Dozier technique 
200 11.2 µm threshold cloud test 
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205 
3.9 µm (Channel 7) minus 11.2 µm (Channel 14) negative difference threshold cloud 
test 

210 
3.9 µm (Channel 7) minus 11.2 µm (Channel 14) positive difference threshold cloud 
test 

215 Albedo threshold cloud test (daytime only) 
220 12.3 µm (Channel 15) threshold cloud test (only used when data available) 

225 
11.2 µm (Channel 14) minus 12.3 µm (Channel 15) negative difference threshold 
cloud test 

230 
11.2 µm (Channel 14) minus 12.3 µm (Channel 15) positive difference threshold 
cloud test 

240 
Along scan reflectivity product test to identify and screen for cloud edge used in 
conjunction with 3.9 µm (Channel 7) threshold 

245 
Along scan reflectivity product test to identify and screen for cloud edge used in 
conjunction with albedo threshold 

 
Table 3.12 describes the Quality Assurance flags, which are generated from the mask described in 
Table 3.11. 
 

Table 3.12 FDCA Quality Assurance Flags 

GOES-R ABI WF_ABBA FDCA QA Flages 
QA Code Fire Mask Code(s) and Definition 

0 
10-15, 20-25, 30-35 [20-25 not used for ABI currently]: These are the 
codes for fires, all are considered valid algorithm output. 

1 100: Fire-free land pixel that was not otherwise screened out. 

2 
200, 205, 210, 215, 220, 225, 230, 240, 245: The pixel failed opaque 
cloud tests. 

3 
0, 40, 50, 60, 130, 150-153, 155: Pixel unusable due to unusable surface 
type, sunglint, or being off the disk.  Also includes reserved mask 
values not including 20-25. 

4 120-127, 160: Bad input data. 
5 170, 180, 182, 185-188: A calculation in the algorithm failed. 
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4 TEST DATA SETS AND OUTPUTS 
The development, implementation, and testing of the GOES-R ABI fire detection and 
characterization algorithm was limited by a lack of proxy data sets.  Although a similar version of 
the GOES-R ABI fire code has been implemented for application with GOES-E/W, MET-8/-9 
SEVIRI, and MTSAT-1R JAMI, none of these instruments are ideal as ABI proxy data.  
Development and testing focused primarily on model simulated ABI proxy data created by the 
Cooperative Institute for Research in the Atmosphere (CIRA) and MODIS simulated ABI data 
created by the Cooperative Institute for Meteorological Satellite Studies (CIMSS).  
 

4.1 Simulated Input Data Sets 

The ABI proxy data team at CIRA generated synthetic model simulated GOES-R ABI 
multispectral imagery of fire hot spots for a severe weather case in eastern Kansas on May 8, 2003, 
for Central America on April 23, 2004 during the spring burning season, and two cases in Southern 
California – one on October 23 and the other on October 26 both in 2007 during the fall fire season 
(Grasso, et. al., 2008).   All cases extended over 6 hours with a 5-minute interval between images.  
The Kansas case study covered the time period from 1800 to 2355 UTC, and the Central America 
and both October California case study extended from 1500 to 2055 UTC. 
 
CIRA provided three variations of the Kansas test case. In each variation the fires are laid out in a 
regular grid.  In the constant fire case studies size and shape vary in the east-west direction and 
temperature varies in the north-south. The base grid has a cell size of 400 m on a side, a resolution 
that balanced computational time against the highest resolution possible. The simulated ABI data 
was re-projected to the ABI resolution and navigation using a Gaussian distribution to approximate 
the point spread function (PSF).  The model simulated data sets utilized a very preliminary PSF 
where 75% of the signal comes from the center field of view (FOV) for the 3.9 µm band and 51% 
for the 11.2 µm band.  We expect the ABI data and fire product to be different when updated PSFs 
are received and applied. 
 
This technique provides for a very well defined truth dataset and was applied to three conditions 
within their mesoscale weather model for Kansas: constant fires with no clouds, constant fires with 
clouds, and variable fires with no clouds.  These 3 variations are extremely useful in testing the 
limits of the GOES-R ABI fire code in both clear-sky and cloudy conditions as further described 
in Section 4.2.  It should be noted that the large fires in this simulation are emitting an extreme 
amount of power, well above that normally detected by satellites with over 41% of the fire pixels 
saturating the 3.9 µm band.  During the GOES-R ABI era we expect less than 5% saturation. 
 
UW-Madison CIMSS created proxy multi-spectral ABI data relevant for fire detection using 
MODIS bands 1, 21, 31 and 32 (0.65 µm, 3.99 µm, 11 µm and 12 µm respectively, mapped to 
ABI bands 2, 7, 14, and 15, respectively).  ABI data at 2-km resolution (at the sub-satellite point, 
assumed to be 0 N, 75 W) are computed using full-resolution MODIS data and a point spread 
function (PSF) that approximates the PSF for the ABI sensor.  The technique incorporates viewing 
geometry and spatial response.  CIMSS utilized a preliminary PSF where 75% of the signal comes 
from the center FOV for the 3.9 µm band and 51% for the 11.2 µm band.  We expect the ABI data 
and fire product to be different when updated PSFs are received/applied.   Although “truth” is not 
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available for the MODIS to ABI simulated data set, the data provides realistic examples of fire 
activity in the Western Hemisphere and the opportunity to compare with the MODIS fire product 
(both fire locations and FRP).  
  
Simulated data were produced for eight fire case studies in three unique fire domains subject to 
different satellite view angles. The three case studies represent wildfire activity along the 
urban/wildland interface in southern California, agricultural management fires in Central America 
and deforestation/agricultural management in western Brazil.  The eight cases are listed below in 
Table 4.1. 
 

Table 4.1 GOES-R ABI simulated case studies derived from MODIS 

Simulated ABI case studies 
Location Date Time (UTC) 

Southern California October 27, 2003 09:50 

Southern California October 27, 2003 20:55 

Central America April 24, 2004 18:45 

South America September 7, 2004 15:00 

South America September 7, 2004 17:50 

Southern California October 23, 2007 18:25 

Southern California October 24, 2007 20:45 

Southern California October 26, 2007 18:55 

 
The Algorithm Delivery Package contains a subset of the MODIS-derived and CIRA model-
derived cases, as listed in Table 4.2. 
 

Table 4.2 Algorithm Delivery Package cases 

Algorithm Delivery Package cases 
Location, source Date Time (UTC) 

South America, MODIS September 7, 2004 17:50 

Southern California, model October 26, 2007 15:00 

Southern California, model October 23, 2007 15:00 

Central America, model April 24, 2004 16:55 

Kansas, model, varying fires 
w/no clouds 

May 8, 2003 19:15 

Kansas, model, constant fires 
w/no clouds 

May 8, 2003 18:00 

Kansas, model, constant fires 
w/clouds 

May 8, 2003 18:05 
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4.2 Output from Simulated Inputs Data Sets 

Figure 4.1 shows an example of the CIRA model simulated ABI 3.9 µm data for the “variable fires 
with no clouds” (VFNOCLD) case study at 1900 UTC on May 8, 2003.  There are no fires in this 
image.  The CIMSS ABI WF_ABBA fire mask product shows no fires for this time period.   
 

 
Figure 4.1 CIRA model simulated ABI 3.9 µm data for the “variable fires with no clouds” 
(VFNOCLD) case study at 19:00 UTC on May 8, 2003 and the CIMSS ABI WF_ABBA fire 
mask product. 
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Figure 4.2 CIRA model simulated ABI 3.9 µm data for the “variable fires with no clouds” 
(VFNOCLD) case study at 19:15 UTC on May 8, 2003 and the CIMSS ABI WF_ABBA fire 
mask product. 
 
Figure 4.2 shows an example of the CIRA model simulated ABI 3.9 µm data for the “variable fires 
with no clouds” (VFNOCLD) case study 15 minutes later at 1915 UTC.  There are numerous fire 
clusters in this image, where a fire cluster is defined as either a single pixel or a group of pixels 
where fires were detected.  Notice that due to the nature of the reprojection from a 400 m model 
to and ABI resolution image there is no longer a one-to-one relationship between simulated 
hotspots and ABI resolution hot spots.  The CIMSS ABI WF_ABBA fire mask product identified 
99% of the fire clusters with many fire pixels identified as saturated and only the smallest and 
coolest simulated fires were unidentifiable. 
 
Prescribed fires were inserted into the CIRA mesoscale model for the Central America case study 
to provide a sample of representative burning in cloudy conditions during the peak of the fire 
season in this region.  GOES/MODIS fire data for this date were utilized to locate and insert the 
fires and model the diurnal signature.  This case study represents more realistic burning conditions 
with various biomes, cloud attenuation, and block-out zones.  The Central America case study 
consisted of simulated ABI data every 5 minutes from 15:00 to 20:55 UTC.  Figure 4.3 shows the 
CIRA model simulated 3.9 µm band at 15:00 UTC.  The ABI WF_ABBA does not observe any 
fire activity at this time period.  By 16:55 UTC (Figure 4.4) a number of dark hot spots associated 
with fires can be seen in the CIRA simulated 3.9 µm imagery.  There is also a cloud deck in the 
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northwest corner of the study region.  The ABI WF_ABBA is able to locate almost all of the fires 
including those obscured by clouds.  Although fire pixels with heavy cloud contamination are not 
processed for sub-pixel fire characterization, if the fires present a strong enough signal, they are 
identified as possible fire pixels in the fire mask.  One of the fire pixels in this example was strong 
enough to saturate the sensor despite the cloud cover.  Figure 4.5 shows the 3.9 µm imagery and 
ABI WF_ABBA fire mask product at 17:20 UTC.  The fire mask clearly shows the locations of 
most of the fire pixels seen in the 3.9 µm imagery.  The exception is the fire pixels located in the 
southeast portion of the study region in a solar block-out region.  Fortunately, for a given location, 
the solar block-out only lasts for approximately 1 hour.   
 

 
Figure 4.3 CIRA model simulated ABI 3.9 µm data for the Central America “variable fires 
with clouds” (VFCLD) case study at 15:00 UTC on April 23, 2004 and the CIMSS ABI 
WF_ABBA fire mask product. 
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Figure 4.4 CIRA model simulated ABI 3.9 µm data for the Central America “variable fires 
with clouds” (VFCLD) case study at 16:55 UTC on April 23, 2004 and the CIMSS ABI 
WF_ABBA fire mask product. 
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Figure 4.5 CIRA model simulated ABI 3.9 µm data for the Central America “variable fires 
with clouds” (VFCLD) case study at 17:20 UTC on April 23, 2004 and the CIMSS ABI 
WF_ABBA fire mask product. 
 
Using the same technique as the variable fires with cloud case in Central America, two cases were 
also generated in California.  Figure 4.6 shows October 23, 2007 at 1500 UTC while Figure 4.7 
shows October 27, 2007 at 1500 UTC.  There is much more fire activity on October 23 then 
October 27 and this is due in part to a shift in the predominate winds that help decrease the fire 
activity.  
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Figure 4.6 CIRA model simulated ABI 3.9 µm data for the California “variable fires with 
clouds” (VFCLD) case study at 15:00 UTC on October 23, 2007 and the CIMSS ABI 
WF_ABBA fire mask product. 
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Figure 4.7 CIRA model simulated ABI 3.9 µm data for the California “variable fires with 
clouds” (VFCLD) case study at 15:00 UTC on October 26, 2007 and the CIMSS ABI 
WF_ABBA fire mask product. 
 
An example of model simulated ABI data and the ABI WF_ABBA fire product mask for each of 
the 3 regions are shown in Figures 4.8 through 4.10.  Figure 4.8 shows MODIS simulated ABI 3.9 
µm data for the Yucatan Peninsula at 18:45 UTC on April 24, 2004.  Various dark hotspots are 
observed in the 3.9 µm imagery in Mexico and Guatemala.  The ABI fire mask shows the locations 
of detected fire pixels and block-out zones including areas where no background values could be 
determined. Often this is associated with negative 3.9 µm minus 11.2 µm difference fields.  Figure 
4.9 shows extensive burning in southwestern Brazil at 17:50 UTC on September 7, 2004.  This 
region borders on Bolivia in the southwest corner of the domain.  The hot spots in the 3.9 µm 
imagery are embedded in a warm background.  The ABI WF_ABBA appears to successfully 
separate the fire signals from the warm background conditions.  It is also able to identify fire pixels 
along cloud edges with minimal false alarms.  Figure 4.10 shows an example of the conflagrations 
that burned in Southern California on October 23, 2007 at 18:25 UTC.  The ABI WF_ABBA 
identifies most of the fire pixels observed in the 3.9 µm imagery with no obvious false alarms. 
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Figure 4.8 CIMSS MODIS simulated ABI 3.9 µm data for Central America at 18:45 UTC 
on April 24, 2004 and the CIMSS ABI WF_ABBA fire mask product. 
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Figure 4.9.  CIMSS MODIS simulated ABI 3.9 µm data in South America at 17:50 UTC on 
September 7, 2004 and the CIMSS ABI WF_ABBA fire mask product. 
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Figure 4.10 CIMSS MODIS simulated ABI 3.9 µm data for Southern California at 18:25 
UTC on October 23, 2007 and the CIMSS ABI WF_ABBA fire mask product. 
 

4.2.1 Precision and Accuracy Estimates 

The GOES-R ABI MRD and F&PS do not provide specific requirements for fire pixel detection 
limits or sub-pixel characterization.  In light of this the ABI fire team extrapolated from the VIIRS 
fire detection/characterization requirements and literature to determine possible ballpark 
requirements for ABI (NPOESS Technical Requirements Document, Version 7, January 24, 2002).  
These are outlined in Table 4.2 and represent the values used in the initial evaluation of the ABI 
fire algorithm.   The actual  GOES-R ABI fire temperature range should be more closely aligned 
with VIIRS (800 K – 1200 K), but this evaluation was designed to test the capability of the GOES-
R ABI fire algorithm across a full fire temperature range from low smoldering to flaming (~400 K 
– 1200 K).  Extrapolation of the VIIRS minimum detectable fire size at sub-satellite point to ABI 
yields a value of ~.004 km2 corresponding to an FRP of ~93 MW.  This study used a slightly 
smaller FRP value of ~75 MW to investigate the lower limits of the algorithm when compared 
with model simulated truth.  Fire temperature and fire area measurement uncertainty were 
extrapolated from VIIRS taking into consideration sensitivity studies by Giglio and Kendall (2001) 
which showed that errors in Dozier algorithm estimates of sub-pixel fire size and temperature are 
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± 100 K and ± 50% respectively at one standard deviation for fires occupying a fraction greater 
than 0.005 (.02 km2). 
 

Table 4.3 VIIRS fire requirements and extrapolation to possible ABI fire requirements 

Fire requirements 

 
VIIRS 

(1 km res) 
Extrapolate to ABI 

(2 km res) 
ABI preliminary 

evaluation 
Fire temperature 
range 

800 K – 1200 K TBD – 1200 K 400 (?) – 1200 K 

Minimum detectable 
fire size at sub-
satellite 

1000 m2 
(0.001 km2) 

Corresponds to FRP of ~ 
23 MW at 800 K 

4000 m2 
(0.004 km2) 

Corresponds to FRP 
of ~ 93 MW 

FRP of ~ 75 MW 

Fire temperature 
measurement 
uncertainty 

50 K 50 K – 100 K > 100 K  

Fire area 
measurement 
uncertainty 

30 – 50 % ~ 50 % > 50 % 

 
Fire product performance evaluation is not trivial and ultimately requires very high resolution 
information and excellent geolocation.  Most fires only occupy a very small portion of a satellite 
pixel.  Figure 4.11 provides a simplified overview of some of the difficulties associated with fire 
validation.  The gray shades represent relative GOES-R ABI 3.9 µm observed brightness 
temperatures where darker shades represent hotter temperatures.  In some cases a group of adjacent 
pixels are affected by a single or multi-front fire or complex as shown in Figure 4.9.  In our analysis 
we refer to A, B, and C as fire clusters while an ABI fire pixel refers to any pixel that is impacted 
by fire activity (e.g. A1-A4, B1-B4, C1) due to a fire within its field of view or due to diffraction.  
In clear sky conditions, the ability to detect a fire and perform fire characterization dependents on 
the fire size, shape, temperature, and location within a pixel.  Figure 4.11 assumes that each fire is 
the same size, shape, and temperature and that an appropriate point spread function (PSF) has been 
applied.  Fire C1 is a saturated pixel and the fire lines up with the peak of the PSF.  The two fires 
in pixels B2 and B3 impact 4 pixels and may be difficult to distinguish from each other since they 
are located on the edge of a pixel.  The signal from fire A is divided among multiple pixels and 
may not provide a strong enough signal to be accurately characterized.  This simplified example 
shows that a given fire may be observed and characterized very differently depending on its 
location in a pixel.  There are a host of additional factors that can effect fire detection and 
characterization as well. 
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Figure 4.11 Example of GOES-R ABI 3.9 µm pixels with embedded fires.  The gray shades 
represent relative 3.9 µm observed brightness temperatures where darker shades represent 
hotter temperatures. 
 
The three variations of the Kansas model simulated case study and the Central American case 
study provided by CIRA, described in Section 4.1, represent the only “truth” ABI proxy data 
currently available for validating both ABI WF_ABBA fire detection and characterization.  
Figures 4.12 - 4.17 give an overview of the ABI WF_ABBA fire detection performance as 
compared with CIRA truth fires for the CIRA Kansas case studies (CFNOCLD, VFNOCLD, 
CFCLD, VFCLD), the Central America case study (VFCLD), and the two California case studies 
(both VFCLD from October 23, 2007 and October 26, 2007).  The plots are a composite of all time 
periods within each case study.  All three of the Kansas case studies show a high percentage of 
saturated pixels in the study domain.  In the Kansas case study with constant fire and no clouds, 
41% of the fire pixels were saturated.  Although there are exceptions, the Kansas case studies, the 
Central America case study, and the California case studies all show that the lower limit for fire 
detection lies above a minimum FRP of approximately 75-100 MW.  In all 4 examples, the 
detection rate is greater than 80% above an FRP value of 75 MW.  For the Kansas CFNOCLD 
case study, the detection rate is 91%.  The plots clearly show that rate at which detection can be 
achieved decrease substantially with decreasing fire temperature, especially below 600K which 
represents smoldering conditions.  For fire pixels with fire temperatures greater than 600K, the 
detection rates are greater than 95% for all cloud-free CIRA model simulated ABI data sets with 
a slightly lower detection rate in the simulations with clouds. 
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Figure 4.12 GOES-R ABI WF_ABBA fire pixel detection summary for the CIRA model 
simulated Kansas “Constant Fire No Cloud” (CFNOCLD) case study. 
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Figure 4.13 GOES-R ABI WF_ABBA fire pixel detection summary for the CIRA model 
simulated Kansas “Variable Fire No Cloud” (VFNOCLD) case study. 



 

 61

 
Figure 4.14 GOES-R ABI WF_ABBA fire pixel detection summary for the CIRA model 
simulated Kansas “Constant Fire with Cloud” (CFCLD) case study. 
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Figure 4.15 GOES-R ABI WF_ABBA fire pixel detection summary for the CIRA model 
simulated Central America Variable Fire with Cloud (VFCLD) case study. 
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Figure 4.16 GOES-R ABI WF_ABBA fire pixel detection summary for the CIRA model 
simulated October 23, 2007 California Variable Fire with Cloud (VFCLD) case study. 
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Figure 4.17 GOES-R ABI WF_ABBA fire pixel detection summary for the CIRA model 
simulated October, 26 2007 California Variable Fire with Cloud (VFCLD) case study. 
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Table 4.4 provides a summary of GOES-R WF_ABBA fire detection for all four CIRA model 
simulated case studies.  The statistics include all time periods for each case study.  Fire pixels with 
average fire temperatures less than 400 K and with FRP less than 75 MW and those in regions 
with opaque cover or block-out zones are eliminated from the analysis.  For the “no cloud” case 
studies the algorithm detected more than 99% of the fire clusters.  For the Kansas CFCLD and 
Central America VFCLD case studies, the detection rate for fire clusters was 95.9% and 95.2%, 
respectively.  The two VFCLD cases in California also resulted in fire cluster detection rates 
exceeding 99%.  For individual fire pixels within the fire clusters, the detection rates are lower due 
to the effects of diffraction, semi-transparent cloud obscuration, and atmospheric attenuation.  The 
percentage of false alarms is less than 1% for all case studies.  Overall the results show that for 
fire detection the GOES-R WF_ABBA meets the x80 level given the relatively conservative 
“ballpark” requirements extrapolated from VIIRS. 
 

Table 4.4 Overview of ABI WF_ABBA Fire Detection Performance 

CIRA Model Simulated Case Studies^ 
 CIRA Truth ABI WF_ABBA 

 
Total # 
of fire 

clusters* 

Total # 
of ABI 

fire 
pixels* 

Total 
# of 
ABI 
fire 

pixels 
> FRP 
of 75 
MW* 

Total # 
of 

detected 
clusters 

% Fire 
clusters 

detected* 

Total # 
of fire 
pixels 

detected 
> FRP 
of 75 
MW* 

% Fire 
pixels 

detected 
> FRP 
of 75 
MW* 

% 
False 

alarms 

Kansas 
CFNOCLD 

9720 63288 52234 9648 99.3% 47482 90.9% <1% 

Kansas 
VFNOCLD 

5723 36919 26600 5695 99.5% 551 80.6% <1% 

Kansas 
CFCLD 

9140 56553 46446 8768 95.9% 39380 84.8% <1% 

Cent. 
Amer. 

VFCLD 
849 2859 1669 808 95.2% 1424 85.3% <1% 

Oct 23, 
2007 

California 
VFCLD 

990 4710 2388 989 99.9% 2090 87.5% <1% 

Oct, 26 
2007 

California 
VFCLD 

120 522 252 120 100% 211 83.7% <1% 

 

Table 4.5 Definition of acronyms for case studies (detection) 

CFNOCLD Constant Fire No Cloud 
^  Limit to ~ 400K minimum fire temperature 

VFNOCLD Variable Fire No Cloud 
CFCLD Constant Fire with Cloud 

*  In clear sky regions, eliminating  block-out zones 
VFCLD Variable Fire with Cloud 
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Table 4.6 summarizes the GOES-R ABI WF_ABBA fire characterization performance for the 
CIRA model simulated case studies.  The Kansas case study includes 41% saturated pixels which 
account for a large portion of the total fire area.  This level of saturation is not typical, a result of 
unrealistically intense fires, and we expect less than 5% saturation with the operational GOES-R 
ABI.  Fire pixels with average fire temperatures less than 400 K and with FRP less than 75 MW 
and those in regions with opaque cover or block-out zones are eliminated from the analysis.  The 
WF_ABBA fire area statistics are for non-saturated fire pixels and do not include estimates for 
saturated, cloud contaminated or possible fire pixel categories. For the Kansas CFNOCLD case 
study the GOES-R WF_ABBA estimates of fire area and FRP exceed 90% of truth.  For the Kansas 
VFNOCLD and CFCLD case studies the total GOES-R WF_ABBA fire area estimates are 77% 
and 82% of truth while the FRP is 66% and 25% of truth, respectively.  We are investigating the 
cause for the low FRP percentage for the Kansas CFCLD case study as compared with the higher 
percentage of truth for fire area.  This appears to be associated with cloud cover and unrealistically 
large intense fires in the Kansas case study.  The intense fires provide quite a clear signal through 
the clouds that are categorized as high possibility fires rather than cloudy fires masked by semi-
transparent clouds.  FRP is computed for high possibility fire pixels and the estimate for these 
large fires is very low due to cloud attenuation.  Fire area is not computed for possible fires.  So 
these fires are not included in the fire size statistics. Since the Central America and two Californian 
VFCLD case study are more representative of actual fire activity it provides a more realistic 
estimate of the GOES-R ABI fire characterization performance under typical burning and 
observing conditions however when fires occur under clouds the ABI resolution “truth” FRP 
reported by the CIRA model is the FRP as observable at the top of the atmosphere rather than FRP 
emitted by the fire; WF_ABBA reports the FRP emitted for the fire after applying corrections for 
atmospheric attenuation..  For Central America the total WF_ABBA estimated fire area was 56% 
of truth, while the FRP was 69% of truth.   The October 23 case contains a much larger sample of 
fires than the in October 26.  The October 23 California case WF_ABBA estimated fire area 
actually exceeded the modeled truth by a rate of 126% with the October 26 case reported 57% in 
fire area; FRP was 105% and 100% of the modeled truth respectively.  Again due to the nature of 
the modeling the “truth” ABI resolution FRP is still suspect due to the way they interact with 
clouds. Overall the results show that for fire characterization the GOES-R WF_ABBA meets the 
relatively conservative “ballpark” requirements extrapolated from VIIRS. 
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Table 4.6 Overview of ABI fire characterization performance 

CIRA Model Simulated Case Studies 
 CIRA Truth* ABI WF_ABBA 

 
Total 
Fire 
Area 
(km2) 

Total 
FRP 

(MW) 

Total Fire 
Area 
Non-

saturated 
WFABBA 

Match 
(km2) 

Total 
FRP Non-
Saturated 
WFABBA 

Match 
(MW) 

Total 
WFABBA 

Fire 
AREA* 
(km2) 

Total 
WFABBA 

FRP* 
(MW) 

Total 
WFABBA 
Fire Area 

% of 
“truth” 

Total 
WFABBA 
FRP % of 

“truth” 

Kansas 
CFNOCLD 

2.5X104 9.2X108 4.2X103 2.0X107 4.2X103 1.8X107 98.8% 91% 

Kansas 
VFNOCLD 

1.4X104 1.6X108 4.8X103 1.6X107 3.7X103 1.0X107 77.4% 66% 

Kansas 
CFCLD 

2.5X104 9.2X108 3.1X103 6.2X107 2.5X103 1.6X107 81.6% 25% 

Cent. 
Amer. 

VFCLD 
159.4 2.0X106 86.0 5.8X105 48.4 4.0X105 56.3% 69% 

Oct, 23 
2007 

California 
VFCLD 

158.4 3.7X106 100.0 9.1X105 125.9 9.5X105 125.9%. 105% 

Oct, 27 
2007 

California 
VFCLD 

19.2 1.6X106 12.7 8.1X104 7.2 8.1X104 57.1% 100% 

 

Table 4.7 Definition of acronyms for case studies (characterization) 

CFNOCLD Constant Fire No Cloud *  The WF_ABBA fire area estimates are for non-saturated 
processed fire pixels.  No extrapolation is done for other 
non-processed category fire pixels.  

VFNOCLD Variable Fire No Cloud 
CFCLD Constant Fire with Cloud 
VFCLD Variable Fire with Cloud ^  The Kansas case study included 41% saturated fire pixels 

that could not be compared with ABI WF_ABBA output.  
Note:  Results are for a minimum fire temperature of ~400K in clear-sky conditions 

 
Truth is not known for the MODIS to ABI case studies, but these data sets provide realistic 
examples of fire activity in the Western Hemisphere and can be used to compare the GOES-R ABI 
fire product with the current MODIS fire product to check for consistency between products.  True 
validation must utilize higher resolution instruments similar to the validation studies performed by 
Shroeder et al. (2008b,c). 
 
Although the GOES-R WF_ABBA and MODIS fire algorithms are both contextual with many 
similarities, it is important to note that the GOES-R WF_ABBA and MODIS fire algorithms may 
identify different fire pixels due to inherent differences in the resolving capability of the 
instruments and in the techniques used to detect fires from a geostationary versus polar orbiting 
platform.  For a given image the MODIS fire algorithm will be able to identify smaller fires due 
to the better spatial resolution (1 km for MODIS versus 4 km for GOES-R ABI).  The ABI fire 
algorithm may identify different fires because in certain conditions it may use less stringent 
thresholds, since the technique can utilize high temporal information to screen for false alarms.    
 
Figures 4.18 through 4.25 offer a visual comparison of the GOES-R ABI WF_ABBA fire mask 
product with the MODIS fire product for eight MODIS to ABI simulated case studies in three 
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different biomes in the Western Hemisphere.  The MODIS fire product is overlaid on the GOES-
R ABI fire mask.  In all cases the fire locations have been enlarged to enable visual inspection.  
Low confidence WF_ABBA and MODIS fire pixels have been excluded from this comparison.  
The offset between the GOES and MODIS fire products in the 2003 and 2007 Southern California 
case studies is primarily a plotting factor, although there are offsets associated with remapping the 
MODIS data to ABI.  The series of MODIS to ABI simulated images for October 2007 show the 
progression of the wildfires at the peak of the fire activity with Santa Ana winds fanning the flames 
(October 23-24, 2007) and after the wind shift with on-shore flow and higher humidities (October 
26, 2007). 
 
Generally the ABI and MODIS fire products show the same overall pattern in fire locations, 
although there are differences, especially in Central and South America.  CIMSS is investigating 
the attributes of fire pixels that are unique to either the ABI or MODIS fire product.    
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Figure 4.18 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Central America with the MODIS fire product at 18:45 UTC on April 24, 
2004. 
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Figure 4.19 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in South America with the MODIS fire product at 17:50  UTC on September 7, 
2004. 
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Figure 4.20 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Bolivia with the MODIS fire product at 15:00 UTC on September 7, 2004. 
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Figure 4.21 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Southern California with the MODIS fire product at 20:55 UTC on October 
27, 2003. 
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Figure 4.22 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Southern California with the MODIS fire product at 09:50 UTC on October 
27, 2003. 
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Figure 4.23 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Southern California with the MODIS fire product at 18:25 UTC on October 
23, 2007. 
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Figure 4.24 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Southern California with the MODIS fire product at 20:45 UTC on October 
24, 2007. 
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Figure 4.25 Comparison of the GOES-R ABI WF_ABBA fire product for MODIS to ABI 
simulated data in Southern California with the MODIS fire product at 18:55 UTC on October 
26, 2007. 
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Comparisons of GOES-R ABI and MODIS fire detection and characterization for all eight MODIS 
to ABI simulated case studies are shown in Figures 4.26 and 4.27.  The analysis reflects a regional 
comparison of fires detected and characterized with the GOES-R ABI WF_ABBA and MODIS 
and not a direct comparison of co-located fire pixels.  The comparisons are meant to show only 
that the ABI WF_ABBA fire product yields results on the same order of magnitude as the MODIS 
fire product.  A direct comparison of fire products would not provide validation against “truth” 
because the MODIS fire detects are not in themselves a source of objective truth.  Additionally, 
the PSF convolution performed on the MODIS data to make it ABI-like causes some fires to 
become undetectable, further skewing “validation” results against MODIS fire detections. 
 
Figure 4.26 provides a summary of the number of fire pixels detected by the ABI and MODIS fire 
algorithms (excluding low confidence fire pixels) and the number of fire pixels with a GOES-
R/MODIS match.  For the Southern California case studies in 2003 and 2007 the MODIS fire 
algorithm detects many more fire pixels than the GOES-R ABI WF_ABBA, but for most cases 
there is at least one GOES-R fire pixel match in the vicinity.  The exception is October 24, 2007 
at 20:45 UTC when MODIS detected more isolated fire pixels.  Overall 91% of the ABI detected 
fire pixels have a MODIS match and 85% of the MODIS fire pixels have an ABI match.  A more 
detailed analysis is under way to compare co-located fire pixels. 
 
Figure 4.27 shows a summary of the total FRP determined by the ABI and MODIS fire algorithms 
as well as a comparison of total FRP for fire pixels that are co-located WF_ABBA and MODIS 
fire product fire detections.  Overall, the WF_ABBA calculated FRP is larger than the MODIS 
estimated FRP, especially for the South American case study on September 7 (day 251), 2004 at 
17:50 UTC.  For this case study the WF_ABBA FRP estimate was approximately 56% higher than 
the MODIS estimate.  On average, the ABI total FRP estimates are 1.90 times larger than MODIS 
FRP for co-located fire pixels.  As mentioned previously, fire characterization is only expected to 
provide values that are within 50% of truth. Given the limitations of the technique, the differences 
in ABI and MODIS estimates of FRP are to be expected. There are numerous reasons for MODIS 
and WF_ABBA fire product differences (discussed throughout this document), however the 
importance of Figures 4.26 and 4.27 is to illustrate that in spite of the product differences 
WF_ABBA and MODIS fire detections are comparable on the first order. 
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Figure 4.26 Comparison of GOES-R ABI WF_ABBA and MODIS fire product fire counts 
for the MODIS simulated ABI case studies. 
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Figure 4.27 Comparison of GOES-R ABI WF_ABBA and MODIS Fire Radiative Power 
(FRP) for the MODIS simulated ABI case studies. 
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Although the current GOES-E/-W Imager, Met-8/-9 SEVIRI and MTSAT-1R JAMI cannot serve 
as proxy data sets for ABI due to limitations associated with each of the instruments, a version of 
the WF_ABBA similar to the prototype ABI WF_ABBA was applied to data from each of these 
platforms.  This exercise was able to provide an initial look at the effect of regridding/resampling 
on fire detection with the WF_ABBA (Met-8) and data from a large detector array (MTSAT-1R).   
It was encouraging to note that based on visual inspection (no ground truth available), a similar 
version of the code can be utilized across all three platforms and demonstrates the robustness of 
the algorithm given a variety of instrument limitations.  Figure 4.28 shows the Met-9 fire product 
mask for August 25, 2007 at 11:45 UTC at the height of the devastating 2007 wildfire season in 
Greece that resulted in the loss of 84 lives, with a burned area in excess of 650,000 acres and an 
estimated cost of approximately $3 billion.  The Met-9 WF_ABBA fire product was able to 
document the diurnal variability in the fire activity. 
 

 
Figure 4.28 Met-9 SEVIRI WF_ABBA observations of the devastating wildfires in Greece 
at 11:45 UTC on August 25 2007. 
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4.2.2 Error Budget 

The requirements for the ABI WF_ABBA state that fire properties, when derived, are used to 
recalculate the input 3.9 µm brightness temperature and that it should match within 2 K.  Thus the 
results presented in Section 4.2.1 are irrelevant to whether the algorithm meets its specification.  
The Dozier method used to calculate fire properties and the radiance-based method to calculate 
FRP both are tied directly to the input data and the algorithm matches the results to the input data 
to a precision better than 0.00001K for both Channels 7 and 14.  As a result the F&PS 100% 
requirement for the algorithm is met in all cases to within the precision error of the system being 
used.  This requirement was actually an instrument requirement request made by the fire team that 
was transcribed into a product requirement at some level.  It is under review. 
 
To illustrate that the algorithm meets requirements, data from the case studies derived from 
MODIS data and starting with the WF_ABBA derived fire characteristics of fire size and fire 
temperature are used to recreate the input brightness temperatures.  In Section 3.4.2 the description 
of the terms of the Dozier method for solving for fire size and temperature was described in Tables 
3.7 and 3.8.  For this calculation, the background temperature of the fire-free portion of the pixel, 
the fire size, and fire temperature, can be inserted into the equations in order to solve for the pixel 
brightness temperature.  Product requirements state that the derived pixel brightness temperature 
should be within 2 K of the brightness temperature that was originally used to solve for the fire 
size and temperature.  The calculations use what is referred to as the 3.9 µm adjusted brightness 
temperature, where the adjustment refers to atmosphere, solar, and emissivity corrections which 
have been applied to the observed brightness temperature. Figure 4.29 confirms that the derived 
3.9 µm temperature exceeds the requirement and is within 0.1 K of the brightness temperature 
used to calculate fire size and temperature.  In fact when WF_ABBA finds a valid fire size and 
temperature solution the equations are reversible with only small errors associated with rounding 
and truncation errors from the calculations.  Figure 4.29 shows the aggregate of fire detections 
from the ABI data generated from the MODIS simulations described in Table 4.1 from Section 
4.1, and only the subset of fire pixels with valid fire size and temperature solutions can be used to 
perform this calculation. 
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Figure 4.29 Derived temperature differences from WF_ABBA MODIS-ABI simulations. 
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5 Practical Considerations 
Several issues involving numerical computation, programming and procedures, quality assessment 
and diagnostics, exception handling, and algorithm validation are considered in this section. 
 
The ABI fire algorithm utilizes various static and dynamic ancillary input data sets as outlined in 
Section 3.3.2.  The algorithm and code must be flexible enough to allow integration of 
modified/improved ancillary data sets as warranted through research and testing.  Furthermore, 
output data sets (e.g. fire listing and fire mask) may need to be modified to meet user 
needs/requirements.     
 

5.1 Numerical Computation Considerations 

The GOES-R ABI fire algorithm is based on a decision tree approach and only requires numerical 
methods for determining sub-pixel fire characteristics for a small subset of the total number of 
pixels in an image.  Look-up tables are used to adjust for atmospheric attenuation which helps 
meet latency requirements (<5 minutes for CONUS).  The algorithm performs operations that 
require accurate conversion from temperature to channel radiance and channel radiance to 
temperature. 
 

5.2 Programming and Procedural Considerations 

Although possible fires are determined on a pixel by pixel basis, the ABI fire algorithm requires 
an expanding window around the pixel being evaluated to determine the background conditions 
for the visible, 3.9 µm and 11.2 µm channels.  Fire pixel determination involves a series of decision 
trees in two stages (Part I and Part II).  This allows for identification of all possible fire pixels in 
Part I and further refinement of the product in Part II.  There are instances where it is not possible 
to converge on a solution for the Dozier method, although this is rare, fire confidence categories 
and flags are used to provide the end user fire characterization and not just fire location 
information.  The current ABI WFABBA does not rely on other ABI products as input. Ancillary 
non-ABI input can be created off-line and prior to run time. 
 
Fire case data was generated with 3.9 µm (Channel 7) temperatures up to 400 K to match the ABI 
saturation spec.  Some drift in saturation point may occur as the satellite ages.  When a pixel 
exceeds the defined saturation point by 5 K, it should be flagged as a bad pixel rather than 
processed as a potential saturated fire pixel. 
 
The expanding background window reaches a maximum size of 201x201 pixels.  In order to 
accommodate this the algorithm has traditionally left a buffer of 100 pixels on each edge of the 
scan where fire detection is not attempted to allow the background window to expand.  The 
delivered algorithm limited this buffer to 3 pixels due to the limited geographic scope of the test 
datasets.  It is unclear what would happen if the buffer were reduced to zero.  However a smaller 
value such as 50 might be acceptable.  Those variations were not testable given the available 
datasets. 
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Related to the issue of a buffer around the entire image is processing the image scan in blocks.  
The algorithm was developed assuming that when a pixel is examined the background window 
could expand fully.  If processing is implemented in blocks, the system must be able to handle 
overlap between the blocks so that the background window can properly expand.  That overlap 
would need to be 100 pixels. 
 

5.3 Quality Assessment and Diagnostics 

The output fire mask will include fire confidence information and meta data regarding processing 
issues and block-out zones.  Future calibration and validation will be based on comparison of the 
ABI fire product with high resolution data (e.g. 30 m Landsat7 ETM+, Terra ASTER, Landsat 
Data Continuity Mission OLI - launch 2011) and will be performed on a routine and automated 
basis (to the extent possible).  Daily/weekly assessment will include visualization of coincident 
ABI and high resolution imagery in several biomes in regions with known fire activity. 
 
Statistics summarizing ongoing intercomparisons of ABI and VIIRS fire products will be 
generated and evaluated under different viewing angles, viewing conditions and in different 
biomes, etc.  Monthly statistics will include detection probabilities as a function of sub-pixel 
characteristics and omission and commission errors. 
 

5.4 Exception Handling 

Most run-time exceptions are handled by the framework running the fire code. The WF_ABBA 
requires the 3.9 µm and 11.2 µm bands, biome type, emissivity, and TPW.  Lack of this data will 
cause the algorithm to exit for the given pixel (if radiances or biome are missing for it) or for the 
image if one or more required data inputs are not present.  Other data inputs are optional. 
 

5.5 Algorithm Validation 

For the ABI WF_ABBA, algorithm verification and validation is limited due to the lack of “truth” 
data sets.  Although various fire databases exist for federal, state, Native American, and private 
lands, many fires are not documented.  There is no comprehensive database of all fire activity in 
the U.S. (e.g. wildfires and agricultural burning).  The GOES-R ABI fire product was evaluated 
using the limited set of model simulated ABI data provided by CIRA and MODIS simulated ABI 
data provided by CIMSS.  Although truth is not known for the MODIS to ABI case studies, these 
data sets provide realistic examples of fire activity in the Western Hemisphere and can be used to 
intercompare the GOES-R ABI fire product with the current MODIS fire product to check for 
consistency.  It is also worthwhile to look at validation of the current GOES and MODIS fire 
products, since the ABI fire algorithm is based on the heritage GOES WF_ABBA and is similar 
to the MODIS algorithm. 
 
Several GOES and MODIS fire product validation studies have been performed by the University 
of Maryland (UMD) in collaboration with UW-Madison CIMSS, NESDIS, and NASA.  The 
studies compare the MODIS and GOES WF_ABBA fire products with high-resolution data (30 m 
resolution) from ASTER and Landsat ETM+ in the continental United States and Brazil (Shroeder 
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et al., 2008b; 2008c).  It was found that the MODIS and WF_ABBA fire products have comparable 
commission errors on the order of 2% in the U.S. and 15-17%, respectively, in Brazil. 
Approximately 80% of the commission errors in Brazil were associated with recent burns.  In 
terms of omission errors, the studies showed that the WF_ABBA has an omission error rate only 
twice that of MODIS despite having a 4 km versus a 1 km footprint.  Furthermore, by using diurnal 
information, the GOES WF_ABBA was able to detect a fire at its peak burning period resulting in 
a 60% reduction in omission errors.  The studies showed that the polar orbiting and geostationary 
fire products are complementary. 
 
Future validations will include additional case study comparisons of GOES-R ABI fire products 
with CIRA model simulated “truth” proxy data and MODIS to ABI simulated data sets.  Due to 
the lack of consistent and comprehensive fire ground truth information, high resolution data (e.g. 
30m resolution Terra/ASTER and Landsat 7/ETM+ data) will be used to validate the ABI fire 
algorithm in a variety of biomes (Shroeder et al., 2007; 2008).  This will be a collaborative effort 
with UMD.  The basic principle involves mapping thermal conditions within the entire footprint 
of the ABI pixel using coincident or near-coincident high resolution imagery.  The primary 
reference data will be Landsat-class (~30m) and Terra ASTER satellite imagery.  Pre-launch 
validation will utilize heritage Terra/ASTER and Landsat7/ETM+ data.  During the GOES-R ABI 
era Landsat Data Continuity Mission (LDCM) Operational Land Imager (OLI) data will be used.  
In addition validation will take advantage of data obtained during airborne observations by 
partnering with existing fire monitoring programs and field campaigns associated with the NASA 
suborbital program and the USFS. 
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6 Assumptions and Limitations 
The assumptions made and potential limitations concerning the algorithm theoretical basis and 
performance are described in this section. 
 
Several assumptions have been made concerning performance estimates.  Most of the limitations 
cited in this section are common to all current and proposed environmental monitoring instruments 
on weather satellites.  Weather satellite instruments are not inherently designed to be able to detect 
and characterize small sub-pixel hot spots.  Improved GOES-R ABI temporal, spatial, and spectral 
monitoring capabilities offer advantages over current systems, but it is important to note the 
limitations.  
 

6.1 Performance 

The algorithm is limited by the availability of accurate input data.  It is assumed that the input test 
data is representative of what the post-launch data will look like, however unforeseen differences 
could impact performance.  Furthermore, current generation GOES Imagers have suffered from 
performance degradation as the imagers have aged.  In the past the successful operation of 
WF_ABBA has been limited mainly by the timely availability of accurately calibrated input data. 
 
Specific limitations are listed as follows: 
 

 Missing Channel 2 or 15.  The algorithm is designed to function without both of 
these bands. 

 
 Missing Channel 7 or 14.  The algorithm will fail and cannot proceed. 

 
 Missing TPW data from a NWP model.  The algorithm will fail and cannot 

proceed. 
 

 Missing other ancillary data.  All ancillary data described in Section 3.3.2 is 
required except for the mask of previous fires.  The algorithm can function without 
it, no temporal filtering will be performed, and a new ABI full disk mask is created 
to serve that purpose. 

 
 Fire detection and characterization are clear-sky products. Fundamentally, the 

quality of any surface product is limited by the ability to quantify how much signal 
is coming from the surface versus interference from the atmosphere and reflection.  
Any unknown sub-pixel cloud or smoke will impact fire detection and 
characterization estimates. Proven techniques are in place to screen for clouds, 
account for solar contamination, and correct for atmospheric attenuation, however 
the algorithm will still performance best under clear-sky conditions. 

 
 ABI performance below specification reduces fire detection and 

characterization performance.  Fire detection and characterization is a product 
derived from sub-pixel resolution features.  If ABI does not perform up to 
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specification particularly in the case of imager noise poor saturation performance 
and/or navigation or registration errors, fire product performance will in turn suffer.   
 

 Remapping to a perfect navigated grid was not fully modeled in these studies; 
resampling/regridding may mask fire signal and impact fire 
detection/characterization. Fire detection and characterization is an exercise of 
identifying sub-resolution features and it is critical to maintain as much 
measurement based information as possible. Resampling and regridding may have 
their benefits in terms of producing smoother and more realistic images with 
improved navigation – and many user applications require accurate fire product 
navigation, however when multiple data points are mathematically combined, the 
processes of characterizing sub-pixel resolution features becomes increasingly 
difficult after resampling and regridding has occurred. 

 
 Fires located on the edge of pixels and/or divided between multiple pixels may 

not be detected or properly characterized due to diffraction.  Diffraction is a 
process where radiant energy disperses in a non-uniform spatial pattern, and as a 
result of diffraction the amount of radiant energy reaching a detector is path-
dependent.  When a hotspot is located near the center of a nominal pixel footprint 
the majority of the radiant energy is captured within that pixel.  However, with a 
hotspot is located near the edge or is divided between multiple pixels the radiant 
energy for the hotspot can be measured in multiple pixels due to diffraction.  As a 
result the fire signature is not as strong in any pixel yet a single hotspot can result 
in numerous fire pixel detections. 

 
 If sub-pixel detector saturation is not flagged, all fire characterization will be 

suspect. Imager saturation limits the ability to characterize fires.  When the sensor 
exceeds the saturation point the recorded radiance no longer represents the target 
radiance.  It is important to identify when the detector sample is saturated so that 
the fire detection can be characterized as coming from a pixel containing a saturated 
sample.  Fire characteristics such as fire size, temperature and, radiative power are 
not reported in user output files for saturated pixels because saturation prevents an 
accurate measurement of the target radiance that is necessary for fire 
characterization. If the detector sample is not flagged as saturated and the data is 
then remapped/regridded, the reported pixel radiances would be artificially low and 
if not flagged the resulting fire detection and characterization would contain a 
corresponding low bias.  The user community can benefit from a flag that tells that 
saturation occurred in a pixel and that the fire detection is still valid but that fire 
characteristics may contain a low bias. 

 
 If calibration and NEdT on the hot end for the 3.9 µm and 11.2 µm bands are 

not well characterized, sub-pixel characterization will be suspect on the hot 
end.  Accurate characterization of the errors attached to radiances is needed to 
understand the error associated with derived fire properties.  Fire detection and 
characterization is more sensitive to radiance noise and radiance bias on the hot end 



 

 88

because cold pixels do not contain fires, so the noise and bias need to be understood.  
 

 Mixed biome pixels may not be properly characterized. The fire algorithm 
requires ancillary data that defines the land type.  This information can then be 
applied in the form of block-out zones where certain biomes such as various water 
types and bare deserts are not further processed by the algorithm because they are 
known to lack significant levels of combustible biomass.  The land type 
classification also establishes the pixel emissivity estimate which is important to 
determining the surface radiative component for the pixel.  In cases where the 
biome has been misclassified or else contains multiple classifications within the 
nominal pixel footprint the fire algorithm may suffer from inaccurate determination 
of surface radiance.  The algorithm may not process a pixel that contains a fire 
because it was misclassified as a biome block-out zone.  Also the WF_ABBA may 
errantly identify a fire pixel due to a highly reflective surface that would not have 
been processed had the pixel been correctly categorized in a block-out biome.  

 
 Sub-pixel fire detection and characterization performance is best at sub-

satellite and decreases with increasing view angle/pixel size.  Fire 
characterization calculations are based on the proportion of the pixel on fire, with 
all of that proportion emitting at the same temperature.  For pixels near the satellite 
limb, a larger fire area is necessary to create the same fire proportion as a pixel with 
a smaller footprint near the sub-satellite point.  As pixel size increases the minimum 
detectable fire increases and the error bars increase with the pixel size.   
 

 The fire product is limited to a view angle of 80º and is subject to block-out 
zones associated with solar zenith angle, reflectance angle, biome type, and 
various processing issues (e.g. regions where it is not possible to determine 
background conditions, etc.).  There are certain situations that preclude fire 
detection from taking place.  Fires can not be identified in regions that the satellite 
cannot see.  Topographical features such as canyons can inhibit fire detection when 
the imager does not have a clear line-of-sight with a target.  Detection is further 
limited in regions with high reflectivity or poor special resolution that occurs near 
the satellite limb. 

 

6.2 Assumed Sensor Performance 

The ABI fire algorithm performance assumptions are as follows.  The algorithm has been tested 
on Pentium III Xeon and Intel Core 2 Duo class CPUs and meets latency requirement on these 
platforms. The code is written and compiled as a single-threaded application and substantial 
enhancements are possible. Performance is proportional to the number of detected fires.  High fire 
activity or high levels of noise that appear to be associated with high fire activity can increase 
runtime.  Based on the performance today, this is not expected to be a problem. Performing 
operations on data in memory with a minimum number of disk accesses is the best way to maintain 
performance. 
 
ABI data was assumed to have a Point Spread Function (PSF) where 75% of the signal comes from 
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the center FOV for the 3.9 µm band and 51% for the 11.2 µm band. Co-registration, radiometric 
performance, and other optical properties aside from the PSF were assumed to be within 
specification.  Radiances were treated as original instrument samples and not as remapped pixels 
in the algorithm development. 
 

6.3 Pre-Planned Product Improvements 

By utilizing additional spectral bands (e.g. Channels 6 and 13 – 2.26 µm and 10.35 µm), higher 
temporal and spatial resolution information and ancillary data sets (e.g. lightning data, improved 
emissivity, etc.), it may be possible to compensate for some of the limitations. 
 

 Improvement 1:  The additional spectral coverage available on ABI allows for the 
possibility of estimating attenuation of the long-wave infrared bands due to water vapor 
utilizing the extra bands. 

 Improvement 2:  The 10.35 µm band (Channel 13) on ABI presents an opportunity for 
improvement not available to legacy WF_ABBA products.  Coupled with the 11.2 µm 
band, the 10.35 µm band has the potential to more accurately identify cloud pixels and 
calculate the “clear-sky” background temperature. 

 Improvement 3:  Improvements in the ancillary data sets offer another opportunity to 
improve WF_ABBA.  Improvements to surface emissivity for example would contribute 
to more accurate representation of surface temperature which in tern would enhance fire 
detection and characterization. 

 Improvement 4:  Another ancillary data set improvement could include the inclusion of 
lightning data.  Lightning is an ignition source to for many forest fires, and could 
potentially be applied to enhance the confidence of fire detections that are collocated with 
lightning detections.  Furthermore, lightning detection has the potential to be used in the 
research and development phase as a surrogate for validation data. 

 Improvement 5:  The 2.26 µm band (Channel 6) on ABI presents another opportunity for 
improvement not available to legacy WF_ABBA products.  Although subject to more solar 
contamination than the 3.9 µm band, the 2.26 µm band will be even more sensitive to hot 
spot thermal anomalies. Further research is necessary to determine how to apply this new 
channel to the detection algorithm to enhance fire detection and characterization without 
out adversely impacting performance. 
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Appendix 1: Common Ancillary Data Sets 
 

1. COAST_MASK_NASA_1KM 

a. Data description 

 
Description: Global 1km land/water used for MODIS collection 5. 
Filename:  coast_mask_1km.nc 
Origin: Created by SSEC/CIMSS based upon NASA MODIS collection 5.  
Size: 890 MB. 
Static/Dynamic: Static  

b. Interpolation description 

 
The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 
 
 

2. DESERT_MASK_CALCLTED 

a. Data description 

 
Description: Desert mask calculated using LAND_MASK_NASA_1KM and 
SFC_TYPE_AVHRR_1KM 
Filename: N/A 
Origin: N/A  
Size: N/A 
Static/Dynamic: N/A 
 

b. Interpolation description 

 
The interpolation is based on the surface type and land mask.  No direct 
interpolation is used in the desert mask calculation, but it is reliant on the 
interpolation found in its dependencies.  
  
The procedure of desert mask calculation is: 
Desert mask is first initialized to “no desert”, then the land mask is checked. In the 
case of LAND, the surface type is then checked. The desert mask is set as “NIR 
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Desert” if the surface type is “wooded_grass_sfc”, “closed_shrubs_sfc”, 
“open_shrubs_sfc”, “grasses_sfc”, or “croplands_sfc”, and is set as “bright_desert” 
if surface type is “bare_sfc”. 
 

3. LAND_MASK_NASA_1KM 

a. Data description 

 
Description: Global 1km land/water used for MODIS collection 5 
Filename: lw_geo_2001001_v03m.nc 
Origin: Created by SSEC/CIMSS based on NASA MODIS collection 5 
Size: 890 MB. 
Static/Dynamic: Static  

b. Interpolation description 

 
The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 

 

4. NWP_GFS 

a. Data description 

 
 Description: NCEP GFS model data in grib format – 1 x 1 degree (360x181), 26 

levels  
 Filename: gfs.tHHz.pgrbfhh 

Where, 
HH – Forecast time in hour: 00, 06, 12, 18 
hh – Previous hours used to make forecast: 00, 03, 06, 09  

Origin: NCEP  
Size: 26MB 
Static/Dynamic: Dynamic 

b. Interpolation description 

 
There are three interpolations are installed: 
 
NWP  forecast interpolation from different forecast time: 
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Load two NWP grib files which are for two different forecast time and 
interpolate to the satellite time using linear interpolation with time difference. 

 
Suppose: 
 
 T1, T2 are NWP forecast time, T is satellite observation time, and 
 T1 < T < T2. Y is any NWP field. Then field Y at satellite observation time T 
is: 
 

Y(T) = Y(T1) * W(T1) + Y(T2) * W(T2) 
 
Where W is weight and 
   

W(T1) = 1 – (T-T1) / (T2-T1) 
W(T2) = (T-T1) / (T2-T1) 

 
 
NWP forecast spatial interpolation from NWP forecast grid points. This 
interpolation generates the NWP forecast for the satellite pixel from the NWP 
forecast grid dataset.   
 

The closest point is used for each satellite pixel: 
 
1) Given NWP forecast grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
 
 

NWP forecast profile vertical interpolation 
 
Interpolate NWP GFS profile from 26 pressure levels to 101 pressure levels 
 
For vertical profile interpolation, linear interpolation with Log pressure is used: 

 
Suppose: 
  
y is temperature or water vapor at 26 levels, and y101 is temperature or water 
vapor at 101 levels. p is any pressure level between p(i) and p(i-1), with p(i-1) 
< p <p(i). y(i) and y(i-1) are y at pressure level p(i) and p(i-1). Then y101 at 
pressure p level is:  

 
y101(p) = y(i-1) + log( p[i] / p[i-1] ) * ( y[i] – y[i-1] ) / log ( p[i] / p[i-
1] ) 
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5. SFC_EMISS_SEEBOR  

a. Data description 

 
 Description: Surface emissivity at 5km resolution 
 Filename:  global_emiss_intABI_YYYYDDD.nc 
  Where, YYYYDDD = year plus Julian day 

Origin: UW Baseline Fit, Seeman and Borbas (2006).   
Size: 693 MB x 12 
Static/Dynamic: Dynamic  

b. Interpolation description 

 
The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 
 

6. SFC_TYPE_AVHRR_1KM 

a. Data description 

 
 Description: Surface type mask based on AVHRR at 1km resolution 
 Filename:  gl-latlong-1km-landcover.nc 

Origin: University of Maryland  
Size: 890 MB 
Static/Dynamic: Static 

b. Interpolation description 

 
The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 

 


